gitea/vendor/github.com/blevesearch/bleve/analysis/freq.go

112 lines
3.0 KiB
Go
Raw Normal View History

2017-01-25 02:43:02 +00:00
// Copyright (c) 2014 Couchbase, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package analysis
// TokenLocation represents one occurrence of a term at a particular location in
// a field. Start, End and Position have the same meaning as in analysis.Token.
// Field and ArrayPositions identify the field value in the source document.
// See document.Field for details.
type TokenLocation struct {
Field string
ArrayPositions []uint64
Start int
End int
Position int
}
// TokenFreq represents all the occurrences of a term in all fields of a
// document.
type TokenFreq struct {
Term []byte
Locations []*TokenLocation
frequency int
}
func (tf *TokenFreq) Frequency() int {
return tf.frequency
}
// TokenFrequencies maps document terms to their combined frequencies from all
// fields.
type TokenFrequencies map[string]*TokenFreq
func (tfs TokenFrequencies) MergeAll(remoteField string, other TokenFrequencies) {
// walk the new token frequencies
for tfk, tf := range other {
// set the remoteField value in incoming token freqs
for _, l := range tf.Locations {
l.Field = remoteField
}
existingTf, exists := tfs[tfk]
if exists {
existingTf.Locations = append(existingTf.Locations, tf.Locations...)
existingTf.frequency = existingTf.frequency + tf.frequency
} else {
tfs[tfk] = &TokenFreq{
Term: tf.Term,
frequency: tf.frequency,
Locations: make([]*TokenLocation, len(tf.Locations)),
}
copy(tfs[tfk].Locations, tf.Locations)
}
}
}
func TokenFrequency(tokens TokenStream, arrayPositions []uint64, includeTermVectors bool) TokenFrequencies {
rv := make(map[string]*TokenFreq, len(tokens))
if includeTermVectors {
tls := make([]TokenLocation, len(tokens))
tlNext := 0
for _, token := range tokens {
tls[tlNext] = TokenLocation{
ArrayPositions: arrayPositions,
Start: token.Start,
End: token.End,
Position: token.Position,
}
curr, ok := rv[string(token.Term)]
if ok {
curr.Locations = append(curr.Locations, &tls[tlNext])
curr.frequency++
} else {
rv[string(token.Term)] = &TokenFreq{
Term: token.Term,
Locations: []*TokenLocation{&tls[tlNext]},
frequency: 1,
}
}
tlNext++
}
} else {
for _, token := range tokens {
curr, exists := rv[string(token.Term)]
if exists {
curr.frequency++
} else {
rv[string(token.Term)] = &TokenFreq{
Term: token.Term,
frequency: 1,
}
}
}
}
return rv
}