matrix-rust-sdk/crates/matrix-sdk-crypto/src/olm/signing/mod.rs

776 lines
26 KiB
Rust

// Copyright 2020 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
mod pk_signing;
use std::{
collections::BTreeMap,
sync::{
atomic::{AtomicBool, Ordering},
Arc,
},
};
use matrix_sdk_common::locks::Mutex;
use pk_signing::{MasterSigning, PickledSignings, SelfSigning, Signing, SigningError, UserSigning};
use ruma::{
api::client::r0::keys::upload_signatures::Request as SignatureUploadRequest,
encryption::{DeviceKeys, KeyUsage},
events::secret::request::SecretName,
UserId,
};
use serde::{Deserialize, Serialize};
use serde_json::Error as JsonError;
use crate::{
error::SignatureError,
identities::{MasterPubkey, SelfSigningPubkey, UserSigningPubkey},
requests::UploadSigningKeysRequest,
store::SecretImportError,
utilities::decode,
OwnUserIdentity, ReadOnlyAccount, ReadOnlyDevice, ReadOnlyOwnUserIdentity,
ReadOnlyUserIdentity,
};
/// Private cross signing identity.
///
/// This object holds the private and public ed25519 key triplet that is used
/// for cross signing.
///
/// The object might be completely empty or have only some of the key pairs
/// available.
///
/// It can be used to sign devices or other identities.
#[derive(Clone, Debug)]
pub struct PrivateCrossSigningIdentity {
user_id: Arc<UserId>,
shared: Arc<AtomicBool>,
pub(crate) master_key: Arc<Mutex<Option<MasterSigning>>>,
pub(crate) user_signing_key: Arc<Mutex<Option<UserSigning>>>,
pub(crate) self_signing_key: Arc<Mutex<Option<SelfSigning>>>,
}
/// A struct containing information if any of our cross signing keys were
/// cleared because the public keys differ from the keys that are uploaded to
/// the server.
#[derive(Debug, Clone)]
pub struct ClearResult {
/// Was the master key cleared.
master_cleared: bool,
/// Was the self-signing key cleared.
self_signing_cleared: bool,
/// Was the user-signing key cleared.
user_signing_cleared: bool,
}
impl ClearResult {
/// Did we clear any of the private cross signing keys.
pub fn any_cleared(&self) -> bool {
self.master_cleared || self.self_signing_cleared || self.user_signing_cleared
}
}
/// The pickled version of a `PrivateCrossSigningIdentity`.
///
/// Can be used to store the identity.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct PickledCrossSigningIdentity {
/// The user id of the identity owner.
pub user_id: UserId,
/// Have the public keys of the identity been shared.
pub shared: bool,
/// The encrypted pickle of the identity.
pub pickle: String,
}
/// Struct representing the state of our private cross signing keys, it shows
/// which private cross signing keys we have locally stored.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct CrossSigningStatus {
/// Do we have the master key.
pub has_master: bool,
/// Do we have the self signing key, this one is necessary to sign our own
/// devices.
pub has_self_signing: bool,
/// Do we have the user signing key, this one is necessary to sign other
/// users.
pub has_user_signing: bool,
}
impl PrivateCrossSigningIdentity {
/// Get the user id that this identity belongs to.
pub fn user_id(&self) -> &UserId {
&self.user_id
}
/// Is the identity empty.
///
/// An empty identity doesn't contain any private keys.
///
/// It is usual for the identity not to contain the master key since the
/// master key is only needed to sign the subkeys.
///
/// An empty identity indicates that either no identity was created for this
/// use or that another device created it and hasn't shared it yet with us.
pub async fn is_empty(&self) -> bool {
let has_master = self.master_key.lock().await.is_some();
let has_user = self.user_signing_key.lock().await.is_some();
let has_self = self.self_signing_key.lock().await.is_some();
!(has_master && has_user && has_self)
}
/// Can we sign our own devices, i.e. do we have a self signing key.
pub async fn can_sign_devices(&self) -> bool {
self.self_signing_key.lock().await.is_some()
}
/// Can we sign other users, i.e. do we have a user signing key.
pub async fn can_sign_users(&self) -> bool {
self.user_signing_key.lock().await.is_some()
}
/// Do we have the master key.
pub async fn has_master_key(&self) -> bool {
self.master_key.lock().await.is_some()
}
/// Get the status of our private cross signing keys, i.e. if we have the
/// master key and the subkeys.
pub async fn status(&self) -> CrossSigningStatus {
CrossSigningStatus {
has_master: self.has_master_key().await,
has_self_signing: self.can_sign_devices().await,
has_user_signing: self.can_sign_users().await,
}
}
/// Get the public part of the master key, if we have one.
pub async fn master_public_key(&self) -> Option<MasterPubkey> {
self.master_key.lock().await.as_ref().map(|m| m.public_key.to_owned())
}
/// Get the public part of the self-signing key, if we have one.
pub async fn self_signing_public_key(&self) -> Option<SelfSigningPubkey> {
self.self_signing_key.lock().await.as_ref().map(|k| k.public_key.to_owned())
}
/// Get the public part of the user-signing key, if we have one.
pub async fn user_signing_public_key(&self) -> Option<UserSigningPubkey> {
self.user_signing_key.lock().await.as_ref().map(|k| k.public_key.to_owned())
}
/// Export the seed of the private cross signing key
///
/// The exported seed will be encoded as unpadded base64.
///
/// # Arguments
///
/// * `secret_name` - The type of the cross signing key that should be
/// exported.
pub async fn export_secret(&self, secret_name: &SecretName) -> Option<String> {
match secret_name {
SecretName::CrossSigningMasterKey => {
self.master_key.lock().await.as_ref().map(|m| m.export_seed())
}
SecretName::CrossSigningUserSigningKey => {
self.user_signing_key.lock().await.as_ref().map(|m| m.export_seed())
}
SecretName::CrossSigningSelfSigningKey => {
self.self_signing_key.lock().await.as_ref().map(|m| m.export_seed())
}
_ => None,
}
}
pub(crate) async fn import_secret(
&self,
public_identity: OwnUserIdentity,
secret_name: &SecretName,
seed: &str,
) -> Result<(), SecretImportError> {
let (master, self_signing, user_signing) = match secret_name {
SecretName::CrossSigningMasterKey => (Some(seed), None, None),
SecretName::CrossSigningSelfSigningKey => (None, Some(seed), None),
SecretName::CrossSigningUserSigningKey => (None, None, Some(seed)),
_ => return Ok(()),
};
self.import_secrets(public_identity, master, self_signing, user_signing).await
}
pub(crate) async fn import_secrets(
&self,
public_identity: OwnUserIdentity,
master_key: Option<&str>,
self_signing_key: Option<&str>,
user_signing_key: Option<&str>,
) -> Result<(), SecretImportError> {
let master = if let Some(master_key) = master_key {
let seed = decode(master_key)?;
let master = MasterSigning::from_seed(self.user_id().clone(), seed);
if public_identity.master_key() == &master.public_key {
Ok(Some(master))
} else {
Err(SecretImportError::MissmatchedPublicKeys)
}
} else {
Ok(None)
}?;
let user_signing = if let Some(user_signing_key) = user_signing_key {
let seed = decode(user_signing_key)?;
let subkey = UserSigning::from_seed(self.user_id().clone(), seed);
if public_identity.user_signing_key() == &subkey.public_key {
Ok(Some(subkey))
} else {
Err(SecretImportError::MissmatchedPublicKeys)
}
} else {
Ok(None)
}?;
let self_signing = if let Some(self_signing_key) = self_signing_key {
let seed = decode(self_signing_key)?;
let subkey = SelfSigning::from_seed(self.user_id().clone(), seed);
if public_identity.self_signing_key() == &subkey.public_key {
Ok(Some(subkey))
} else {
Err(SecretImportError::MissmatchedPublicKeys)
}
} else {
Ok(None)
}?;
if let Some(master) = master {
*self.master_key.lock().await = Some(master);
}
if let Some(self_signing) = self_signing {
*self.self_signing_key.lock().await = Some(self_signing);
}
if let Some(user_signing) = user_signing {
*self.user_signing_key.lock().await = Some(user_signing);
}
Ok(())
}
/// Remove our private cross signing key if the public keys differ from
/// what's found in the `ReadOnlyOwnUserIdentity`.
pub(crate) async fn clear_if_differs(
&self,
public_identity: &ReadOnlyOwnUserIdentity,
) -> ClearResult {
let result = self.get_public_identity_diff(public_identity).await;
if result.master_cleared {
*self.master_key.lock().await = None;
}
if result.user_signing_cleared {
*self.user_signing_key.lock().await = None;
}
if result.self_signing_cleared {
*self.self_signing_key.lock().await = None;
}
result
}
async fn get_public_identity_diff(
&self,
public_identity: &ReadOnlyOwnUserIdentity,
) -> ClearResult {
let master_differs = self
.master_public_key()
.await
.map(|master| &master != public_identity.master_key())
.unwrap_or(false);
let user_signing_differs = self
.user_signing_public_key()
.await
.map(|subkey| &subkey != public_identity.user_signing_key())
.unwrap_or(false);
let self_signing_differs = self
.self_signing_public_key()
.await
.map(|subkey| &subkey != public_identity.self_signing_key())
.unwrap_or(false);
ClearResult {
master_cleared: master_differs,
user_signing_cleared: user_signing_differs,
self_signing_cleared: self_signing_differs,
}
}
/// Get the names of the secrets we are missing.
pub(crate) async fn get_missing_secrets(&self) -> Vec<SecretName> {
let mut missing = Vec::new();
if !self.has_master_key().await {
missing.push(SecretName::CrossSigningMasterKey);
}
if !self.can_sign_devices().await {
missing.push(SecretName::CrossSigningSelfSigningKey);
}
if !self.can_sign_users().await {
missing.push(SecretName::CrossSigningUserSigningKey);
}
missing
}
/// Create a new empty identity.
pub(crate) fn empty(user_id: UserId) -> Self {
Self {
user_id: Arc::new(user_id),
shared: Arc::new(AtomicBool::new(false)),
master_key: Arc::new(Mutex::new(None)),
self_signing_key: Arc::new(Mutex::new(None)),
user_signing_key: Arc::new(Mutex::new(None)),
}
}
pub(crate) async fn to_public_identity(
&self,
) -> Result<ReadOnlyOwnUserIdentity, SignatureError> {
let master = self
.master_key
.lock()
.await
.as_ref()
.ok_or(SignatureError::MissingSigningKey)?
.public_key
.clone();
let self_signing = self
.self_signing_key
.lock()
.await
.as_ref()
.ok_or(SignatureError::MissingSigningKey)?
.public_key
.clone();
let user_signing = self
.user_signing_key
.lock()
.await
.as_ref()
.ok_or(SignatureError::MissingSigningKey)?
.public_key
.clone();
let identity = ReadOnlyOwnUserIdentity::new(master, self_signing, user_signing)?;
identity.mark_as_verified();
Ok(identity)
}
/// Sign the given public user identity with this private identity.
pub(crate) async fn sign_user(
&self,
user_identity: &ReadOnlyUserIdentity,
) -> Result<SignatureUploadRequest, SignatureError> {
let master_key = self
.user_signing_key
.lock()
.await
.as_ref()
.ok_or(SignatureError::MissingSigningKey)?
.sign_user(user_identity)
.await?;
let mut signed_keys = BTreeMap::new();
signed_keys.entry(user_identity.user_id().to_owned()).or_insert_with(BTreeMap::new).insert(
user_identity
.master_key()
.get_first_key()
.ok_or(SignatureError::MissingSigningKey)?
.to_owned(),
serde_json::to_value(master_key)?,
);
Ok(SignatureUploadRequest::new(signed_keys))
}
/// Sign the given device keys with this identity.
pub(crate) async fn sign_device(
&self,
device: &ReadOnlyDevice,
) -> Result<SignatureUploadRequest, SignatureError> {
let mut device_keys = device.as_device_keys();
device_keys.signatures.clear();
self.sign_device_keys(&mut device_keys).await
}
/// Sign an Olm account with this private identity.
pub(crate) async fn sign_account(
&self,
account: &ReadOnlyAccount,
) -> Result<SignatureUploadRequest, SignatureError> {
let mut device_keys = account.unsigned_device_keys();
self.sign_device_keys(&mut device_keys).await
}
pub(crate) async fn sign_device_keys(
&self,
mut device_keys: &mut DeviceKeys,
) -> Result<SignatureUploadRequest, SignatureError> {
self.self_signing_key
.lock()
.await
.as_ref()
.ok_or(SignatureError::MissingSigningKey)?
.sign_device(&mut device_keys)
.await?;
let mut signed_keys = BTreeMap::new();
signed_keys
.entry((&*self.user_id).to_owned())
.or_insert_with(BTreeMap::new)
.insert(device_keys.device_id.to_string(), serde_json::to_value(device_keys)?);
Ok(SignatureUploadRequest::new(signed_keys))
}
/// Create a new identity for the given Olm Account.
///
/// Returns the new identity, the upload signing keys request and a
/// signature upload request that contains the signature of the account
/// signed by the self signing key.
///
/// # Arguments
///
/// * `account` - The Olm account that is creating the new identity. The
/// account will sign the master key and the self signing key will sign the
/// account.
pub(crate) async fn new_with_account(
account: &ReadOnlyAccount,
) -> (Self, UploadSigningKeysRequest, SignatureUploadRequest) {
let master = Signing::new();
let mut public_key =
master.cross_signing_key(account.user_id().to_owned(), KeyUsage::Master);
account
.sign_cross_signing_key(&mut public_key)
.await
.expect("Can't sign our freshly created master key with our account");
let master = MasterSigning { inner: master, public_key: public_key.into() };
let identity = Self::new_helper(account.user_id(), master).await;
let signature_request = identity
.sign_account(account)
.await
.expect("Can't sign own device with new cross signign keys");
let request = identity.as_upload_request().await;
(identity, request, signature_request)
}
async fn new_helper(user_id: &UserId, master: MasterSigning) -> Self {
let user = Signing::new();
let mut public_key = user.cross_signing_key(user_id.to_owned(), KeyUsage::UserSigning);
master.sign_subkey(&mut public_key).await;
let user = UserSigning { inner: user, public_key: public_key.into() };
let self_signing = Signing::new();
let mut public_key =
self_signing.cross_signing_key(user_id.to_owned(), KeyUsage::SelfSigning);
master.sign_subkey(&mut public_key).await;
let self_signing = SelfSigning { inner: self_signing, public_key: public_key.into() };
Self {
user_id: Arc::new(user_id.to_owned()),
shared: Arc::new(AtomicBool::new(false)),
master_key: Arc::new(Mutex::new(Some(master))),
self_signing_key: Arc::new(Mutex::new(Some(self_signing))),
user_signing_key: Arc::new(Mutex::new(Some(user))),
}
}
/// Create a new cross signing identity without signing the device that
/// created it.
#[cfg(test)]
pub(crate) async fn new(user_id: UserId) -> Self {
let master = Signing::new();
let public_key = master.cross_signing_key(user_id.clone(), KeyUsage::Master);
let master = MasterSigning { inner: master, public_key: public_key.into() };
Self::new_helper(&user_id, master).await
}
#[cfg(test)]
pub(crate) async fn reset(&mut self) {
let new = Self::new(self.user_id().to_owned()).await;
*self = new
}
/// Mark the identity as shared.
pub fn mark_as_shared(&self) {
self.shared.store(true, Ordering::SeqCst)
}
/// Has the identity been shared.
///
/// A shared identity here means that the public keys of the identity have
/// been uploaded to the server.
pub fn shared(&self) -> bool {
self.shared.load(Ordering::SeqCst)
}
/// Store the cross signing identity as a pickle.
///
/// # Arguments
///
/// * `pickle_key` - The key that should be used to encrypt the signing
/// object, must be 32 bytes long.
///
/// # Panics
///
/// This will panic if the provided pickle key isn't 32 bytes long.
pub async fn pickle(
&self,
pickle_key: &[u8],
) -> Result<PickledCrossSigningIdentity, JsonError> {
let master_key = if let Some(m) = self.master_key.lock().await.as_ref() {
Some(m.pickle(pickle_key).await)
} else {
None
};
let self_signing_key = if let Some(m) = self.self_signing_key.lock().await.as_ref() {
Some(m.pickle(pickle_key).await)
} else {
None
};
let user_signing_key = if let Some(m) = self.user_signing_key.lock().await.as_ref() {
Some(m.pickle(pickle_key).await)
} else {
None
};
let pickle = PickledSignings { master_key, user_signing_key, self_signing_key };
let pickle = serde_json::to_string(&pickle)?;
Ok(PickledCrossSigningIdentity {
user_id: self.user_id.as_ref().to_owned(),
shared: self.shared(),
pickle,
})
}
/// Restore the private cross signing identity from a pickle.
///
/// # Panic
///
/// Panics if the pickle_key isn't 32 bytes long.
pub async fn from_pickle(
pickle: PickledCrossSigningIdentity,
pickle_key: &[u8],
) -> Result<Self, SigningError> {
let signings: PickledSignings = serde_json::from_str(&pickle.pickle)?;
let master =
signings.master_key.map(|m| MasterSigning::from_pickle(m, pickle_key)).transpose()?;
let self_signing = signings
.self_signing_key
.map(|s| SelfSigning::from_pickle(s, pickle_key))
.transpose()?;
let user_signing = signings
.user_signing_key
.map(|s| UserSigning::from_pickle(s, pickle_key))
.transpose()?;
Ok(Self {
user_id: Arc::new(pickle.user_id),
shared: Arc::new(AtomicBool::from(pickle.shared)),
master_key: Arc::new(Mutex::new(master)),
self_signing_key: Arc::new(Mutex::new(self_signing)),
user_signing_key: Arc::new(Mutex::new(user_signing)),
})
}
/// Get the upload request that is needed to share the public keys of this
/// identity.
pub(crate) async fn as_upload_request(&self) -> UploadSigningKeysRequest {
let master_key =
self.master_key.lock().await.as_ref().map(|k| k.public_key.to_owned().into());
let user_signing_key =
self.user_signing_key.lock().await.as_ref().map(|k| k.public_key.to_owned().into());
let self_signing_key =
self.self_signing_key.lock().await.as_ref().map(|k| k.public_key.to_owned().into());
UploadSigningKeysRequest { master_key, self_signing_key, user_signing_key }
}
}
#[cfg(test)]
mod test {
use std::sync::Arc;
use matrix_sdk_test::async_test;
use ruma::{user_id, UserId};
use super::{PrivateCrossSigningIdentity, Signing};
use crate::{
identities::{ReadOnlyDevice, ReadOnlyUserIdentity},
olm::ReadOnlyAccount,
};
fn user_id() -> UserId {
user_id!("@example:localhost")
}
fn pickle_key() -> &'static [u8] {
&[0u8; 32]
}
#[test]
fn signing_creation() {
let signing = Signing::new();
assert!(!signing.public_key().as_str().is_empty());
}
#[async_test]
async fn signature_verification() {
let signing = Signing::new();
let message = "Hello world";
let signature = signing.sign(message).await;
assert!(signing.verify(message, &signature).await.is_ok());
}
#[async_test]
async fn pickling_signing() {
let signing = Signing::new();
let pickled = signing.pickle(pickle_key()).await;
let unpickled = Signing::from_pickle(pickled, pickle_key()).unwrap();
assert_eq!(signing.public_key(), unpickled.public_key());
}
#[async_test]
async fn private_identity_creation() {
let identity = PrivateCrossSigningIdentity::new(user_id()).await;
let master_key = identity.master_key.lock().await;
let master_key = master_key.as_ref().unwrap();
assert!(master_key
.public_key
.verify_subkey(&identity.self_signing_key.lock().await.as_ref().unwrap().public_key,)
.is_ok());
assert!(master_key
.public_key
.verify_subkey(&identity.user_signing_key.lock().await.as_ref().unwrap().public_key,)
.is_ok());
}
#[async_test]
async fn identity_pickling() {
let identity = PrivateCrossSigningIdentity::new(user_id()).await;
let pickled = identity.pickle(pickle_key()).await.unwrap();
let unpickled =
PrivateCrossSigningIdentity::from_pickle(pickled, pickle_key()).await.unwrap();
assert_eq!(identity.user_id, unpickled.user_id);
assert_eq!(&*identity.master_key.lock().await, &*unpickled.master_key.lock().await);
assert_eq!(
&*identity.user_signing_key.lock().await,
&*unpickled.user_signing_key.lock().await
);
assert_eq!(
&*identity.self_signing_key.lock().await,
&*unpickled.self_signing_key.lock().await
);
}
#[async_test]
async fn private_identity_signed_by_accound() {
let account = ReadOnlyAccount::new(&user_id(), "DEVICEID".into());
let (identity, _, _) = PrivateCrossSigningIdentity::new_with_account(&account).await;
let master = identity.master_key.lock().await;
let master = master.as_ref().unwrap();
assert!(!master.public_key.signatures().is_empty());
}
#[async_test]
async fn sign_device() {
let account = ReadOnlyAccount::new(&user_id(), "DEVICEID".into());
let (identity, _, _) = PrivateCrossSigningIdentity::new_with_account(&account).await;
let mut device = ReadOnlyDevice::from_account(&account).await;
let self_signing = identity.self_signing_key.lock().await;
let self_signing = self_signing.as_ref().unwrap();
let mut device_keys = device.as_device_keys();
self_signing.sign_device(&mut device_keys).await.unwrap();
device.signatures = Arc::new(device_keys.signatures);
let public_key = &self_signing.public_key;
public_key.verify_device(&device).unwrap()
}
#[async_test]
async fn sign_user_identity() {
let account = ReadOnlyAccount::new(&user_id(), "DEVICEID".into());
let (identity, _, _) = PrivateCrossSigningIdentity::new_with_account(&account).await;
let bob_account = ReadOnlyAccount::new(&user_id!("@bob:localhost"), "DEVICEID".into());
let (bob_private, _, _) = PrivateCrossSigningIdentity::new_with_account(&bob_account).await;
let mut bob_public = ReadOnlyUserIdentity::from_private(&bob_private).await;
let user_signing = identity.user_signing_key.lock().await;
let user_signing = user_signing.as_ref().unwrap();
let master = user_signing.sign_user(&bob_public).await.unwrap();
bob_public.master_key = master.into();
user_signing.public_key.verify_master_key(bob_public.master_key()).unwrap();
}
}