matrix-rust-sdk/matrix_sdk_crypto/src/verification/sas/helpers.rs

510 lines
15 KiB
Rust

use std::{collections::BTreeMap, convert::TryInto};
use tracing::trace;
use olm_rs::sas::OlmSas;
use matrix_sdk_common::{
api::r0::{
keys::{AlgorithmAndDeviceId, KeyAlgorithm},
to_device::{send_event_to_device::Request as ToDeviceRequest, DeviceIdOrAllDevices},
},
events::{
key::verification::{cancel::CancelCode, mac::MacEventContent},
AnyToDeviceEventContent, EventType, ToDeviceEvent,
},
identifiers::{DeviceId, UserId},
uuid::Uuid,
};
use crate::{Account, Device};
#[derive(Clone, Debug)]
pub struct SasIds {
pub account: Account,
pub other_device: Device,
}
/// Get a tuple of an emoji and a description of the emoji using a number.
///
/// This is taken directly from the [spec]
///
/// # Panics
///
/// The spec defines 64 unique emojis, this function panics if the index is
/// bigger than 63.
///
/// [spec]: https://matrix.org/docs/spec/client_server/latest#sas-method-emoji
fn emoji_from_index(index: u8) -> (&'static str, &'static str) {
match index {
0 => ("🐶", "Dog"),
1 => ("🐱", "Cat"),
2 => ("🦁", "Lion"),
3 => ("🐎", "Horse"),
4 => ("🦄", "Unicorn"),
5 => ("🐷", "Pig"),
6 => ("🐘", "Elephant"),
7 => ("🐰", "Rabbit"),
8 => ("🐼", "Panda"),
9 => ("🐓", "Rooster"),
10 => ("🐧", "Penguin"),
11 => ("🐢", "Turtle"),
12 => ("🐟", "Fish"),
13 => ("🐙", "Octopus"),
14 => ("🦋", "Butterfly"),
15 => ("🌷", "Flower"),
16 => ("🌳", "Tree"),
17 => ("🌵", "Cactus"),
18 => ("🍄", "Mushroom"),
19 => ("🌏", "Globe"),
20 => ("🌙", "Moon"),
21 => ("☁️", "Cloud"),
22 => ("🔥", "Fire"),
23 => ("🍌", "Banana"),
24 => ("🍎", "Apple"),
25 => ("🍓", "Strawberry"),
26 => ("🌽", "Corn"),
27 => ("🍕", "Pizza"),
28 => ("🎂", "Cake"),
29 => ("❤️", "Heart"),
30 => ("😀", "Smiley"),
31 => ("🤖", "Robot"),
32 => ("🎩", "Hat"),
33 => ("👓", "Glasses"),
34 => ("🔧", "Spanner"),
35 => ("🎅", "Santa"),
36 => ("👍", "Thumbs up"),
37 => ("☂️", "Umbrella"),
38 => ("", "Hourglass"),
39 => ("", "Clock"),
40 => ("🎁", "Gift"),
41 => ("💡", "Light Bulb"),
42 => ("📕", "Book"),
43 => ("✏️", "Pencil"),
44 => ("📎", "Paperclip"),
45 => ("✂️", "Scissors"),
46 => ("🔒", "Lock"),
47 => ("🔑", "Key"),
48 => ("🔨", "Hammer"),
49 => ("☎️", "Telephone"),
50 => ("🏁", "Flag"),
51 => ("🚂", "Train"),
52 => ("🚲", "Bicycle"),
53 => ("✈️", "Airplane"),
54 => ("🚀", "Rocket"),
55 => ("🏆", "Trophy"),
56 => ("", "Ball"),
57 => ("🎸", "Guitar"),
58 => ("🎺", "Trumpet"),
59 => ("🔔", "Bell"),
60 => ("", "Anchor"),
61 => ("🎧", "Headphones"),
62 => ("📁", "Folder"),
63 => ("📌", "Pin"),
_ => panic!("Trying to fetch an emoji outside the allowed range"),
}
}
/// Get the extra info that will be used when we check the MAC of a
/// m.key.verification.key event.
///
/// # Arguments
///
/// * `ids` - The ids that are used for this SAS authentication flow.
///
/// * `flow_id` - The unique id that identifies this SAS verification process.
fn extra_mac_info_receive(ids: &SasIds, flow_id: &str) -> String {
format!(
"MATRIX_KEY_VERIFICATION_MAC{first_user}{first_device}\
{second_user}{second_device}{transaction_id}",
first_user = ids.other_device.user_id(),
first_device = ids.other_device.device_id(),
second_user = ids.account.user_id(),
second_device = ids.account.device_id(),
transaction_id = flow_id,
)
}
/// Get the content for a m.key.verification.mac event.
///
/// Returns a tuple that contains the list of verified devices and the list of
/// verified master keys.
///
/// # Arguments
///
/// * `sas` - The Olm SAS object that can be used to MACs
///
/// * `ids` - The ids that are used for this SAS authentication flow.
///
/// * `flow_id` - The unique id that identifies this SAS verification process.
///
/// * `event` - The m.key.verification.mac event that was sent to us by
/// the other side.
pub fn receive_mac_event(
sas: &OlmSas,
ids: &SasIds,
flow_id: &str,
event: &ToDeviceEvent<MacEventContent>,
) -> Result<(Vec<Device>, Vec<String>), CancelCode> {
let mut verified_devices = Vec::new();
let info = extra_mac_info_receive(&ids, flow_id);
let mut keys = event.content.mac.keys().cloned().collect::<Vec<String>>();
keys.sort();
let keys = sas
.calculate_mac(&keys.join(","), &format!("{}KEY_IDS", &info))
.expect("Can't calculate SAS MAC");
if keys != event.content.keys {
return Err(CancelCode::KeyMismatch);
}
for (key_id, key_mac) in &event.content.mac {
let split: Vec<&str> = key_id.splitn(2, ':').collect();
if split.len() != 2 {
continue;
}
let algorithm: KeyAlgorithm = if let Ok(a) = split[0].try_into() {
a
} else {
continue;
};
let id = split[1];
let device_key_id = AlgorithmAndDeviceId(algorithm, id.into());
if let Some(key) = ids.other_device.keys().get(&device_key_id) {
if key_mac
== &sas
.calculate_mac(key, &format!("{}{}", info, key_id))
.expect("Can't calculate SAS MAC")
{
verified_devices.push(ids.other_device.clone());
} else {
return Err(CancelCode::KeyMismatch);
}
}
// TODO add an else branch for the master key here
}
Ok((verified_devices, vec![]))
}
/// Get the extra info that will be used when we generate a MAC and need to send
/// it out
///
/// # Arguments
///
/// * `ids` - The ids that are used for this SAS authentication flow.
///
/// * `flow_id` - The unique id that identifies this SAS verification process.
fn extra_mac_info_send(ids: &SasIds, flow_id: &str) -> String {
format!(
"MATRIX_KEY_VERIFICATION_MAC{first_user}{first_device}\
{second_user}{second_device}{transaction_id}",
first_user = ids.account.user_id(),
first_device = ids.account.device_id(),
second_user = ids.other_device.user_id(),
second_device = ids.other_device.device_id(),
transaction_id = flow_id,
)
}
/// Get the content for a m.key.verification.mac event.
///
/// # Arguments
///
/// * `sas` - The Olm SAS object that can be used to generate the MAC
///
/// * `ids` - The ids that are used for this SAS authentication flow.
///
/// * `flow_id` - The unique id that identifies this SAS verification process.
///
/// * `we_started` - Flag signaling if the SAS process was started on our side.
///
/// # Panics
///
/// This will panic if the public key of the other side wasn't set.
pub fn get_mac_content(sas: &OlmSas, ids: &SasIds, flow_id: &str) -> MacEventContent {
let mut mac: BTreeMap<String, String> = BTreeMap::new();
let key_id = AlgorithmAndDeviceId(KeyAlgorithm::Ed25519, ids.account.device_id().into());
let key = ids.account.identity_keys().ed25519();
let info = extra_mac_info_send(ids, flow_id);
mac.insert(
key_id.to_string(),
sas.calculate_mac(key, &format!("{}{}", info, key_id))
.expect("Can't calculate SAS MAC"),
);
// TODO Add the cross signing master key here if we trust/have it.
let mut keys = mac.keys().cloned().collect::<Vec<String>>();
keys.sort();
let keys = sas
.calculate_mac(&keys.join(","), &format!("{}KEY_IDS", &info))
.expect("Can't calculate SAS MAC");
MacEventContent {
transaction_id: flow_id.to_owned(),
keys,
mac,
}
}
/// Get the extra info that will be used when we generate bytes for the short
/// auth string.
///
/// # Arguments
///
/// * `ids` - The ids that are used for this SAS authentication flow.
///
/// * `flow_id` - The unique id that identifies this SAS verification process.
///
/// * `we_started` - Flag signaling if the SAS process was started on our side.
fn extra_info_sas(
ids: &SasIds,
own_pubkey: &str,
their_pubkey: &str,
flow_id: &str,
we_started: bool,
) -> String {
let our_info = format!(
"{}|{}|{}",
ids.account.user_id(),
ids.account.device_id(),
own_pubkey
);
let their_info = format!(
"{}|{}|{}",
ids.other_device.user_id(),
ids.other_device.device_id(),
their_pubkey
);
let (first_info, second_info) = if we_started {
(our_info, their_info)
} else {
(their_info, our_info)
};
let info = format!(
"MATRIX_KEY_VERIFICATION_SAS|{first_info}|{second_info}|{flow_id}",
first_info = first_info,
second_info = second_info,
flow_id = flow_id,
);
trace!("Generated a SAS extra info: {}", info);
info
}
/// Get the emoji version of the short authentication string.
///
/// Returns a vector of tuples where the first element is the emoji and the
/// second element the English description of the emoji.
///
/// # Arguments
///
/// * `sas` - The Olm SAS object that can be used to generate bytes using the
/// shared secret.
///
/// * `ids` - The ids that are used for this SAS authentication flow.
///
/// * `flow_id` - The unique id that identifies this SAS verification process.
///
/// * `we_started` - Flag signaling if the SAS process was started on our side.
///
/// # Panics
///
/// This will panic if the public key of the other side wasn't set.
pub fn get_emoji(
sas: &OlmSas,
ids: &SasIds,
their_pubkey: &str,
flow_id: &str,
we_started: bool,
) -> Vec<(&'static str, &'static str)> {
let bytes = sas
.generate_bytes(
&extra_info_sas(&ids, &sas.public_key(), their_pubkey, &flow_id, we_started),
6,
)
.expect("Can't generate bytes");
bytes_to_emoji(bytes)
}
fn bytes_to_emoji_index(bytes: Vec<u8>) -> Vec<u8> {
let bytes: Vec<u64> = bytes.iter().map(|b| *b as u64).collect();
// Join the 6 bytes into one 64 bit unsigned int. This u64 will contain 48
// bits from our 6 bytes.
let mut num: u64 = bytes[0] << 40;
num += bytes[1] << 32;
num += bytes[2] << 24;
num += bytes[3] << 16;
num += bytes[4] << 8;
num += bytes[5];
// Take the top 42 bits of our 48 bits from the u64 and convert each 6 bits
// into a 6 bit number.
vec![
((num >> 42) & 63) as u8,
((num >> 36) & 63) as u8,
((num >> 30) & 63) as u8,
((num >> 24) & 63) as u8,
((num >> 18) & 63) as u8,
((num >> 12) & 63) as u8,
((num >> 6) & 63) as u8,
]
}
fn bytes_to_emoji(bytes: Vec<u8>) -> Vec<(&'static str, &'static str)> {
let numbers = bytes_to_emoji_index(bytes);
// Convert the 6 bit number into a emoji/description tuple.
numbers.into_iter().map(emoji_from_index).collect()
}
/// Get the decimal version of the short authentication string.
///
/// Returns a tuple containing three 4 digit integer numbers that represent
/// the short auth string.
///
/// # Arguments
///
/// * `sas` - The Olm SAS object that can be used to generate bytes using the
/// shared secret.
///
/// * `ids` - The ids that are used for this SAS authentication flow.
///
/// * `flow_id` - The unique id that identifies this SAS verification process.
///
/// * `we_started` - Flag signaling if the SAS process was started on our side.
///
/// # Panics
///
/// This will panic if the public key of the other side wasn't set.
pub fn get_decimal(
sas: &OlmSas,
ids: &SasIds,
their_pubkey: &str,
flow_id: &str,
we_started: bool,
) -> (u16, u16, u16) {
let bytes = sas
.generate_bytes(
&extra_info_sas(&ids, &sas.public_key(), their_pubkey, &flow_id, we_started),
5,
)
.expect("Can't generate bytes");
bytes_to_decimal(bytes)
}
fn bytes_to_decimal(bytes: Vec<u8>) -> (u16, u16, u16) {
let bytes: Vec<u16> = bytes.into_iter().map(|b| b as u16).collect();
// This bitwise operation is taken from the [spec]
// [spec]: https://matrix.org/docs/spec/client_server/latest#sas-method-decimal
let first = bytes[0] << 5 | bytes[1] >> 3;
let second = (bytes[1] & 0x7) << 10 | bytes[2] << 2 | bytes[3] >> 6;
let third = (bytes[3] & 0x3F) << 7 | bytes[4] >> 1;
(first + 1000, second + 1000, third + 1000)
}
pub fn content_to_request(
recipient: &UserId,
recipient_device: &DeviceId,
content: AnyToDeviceEventContent,
) -> ToDeviceRequest {
let mut messages = BTreeMap::new();
let mut user_messages = BTreeMap::new();
user_messages.insert(
DeviceIdOrAllDevices::DeviceId(recipient_device.into()),
serde_json::value::to_raw_value(&content).expect("Can't serialize to-device content"),
);
messages.insert(recipient.clone(), user_messages);
let event_type = match content {
AnyToDeviceEventContent::KeyVerificationAccept(_) => EventType::KeyVerificationAccept,
AnyToDeviceEventContent::KeyVerificationStart(_) => EventType::KeyVerificationStart,
AnyToDeviceEventContent::KeyVerificationKey(_) => EventType::KeyVerificationKey,
AnyToDeviceEventContent::KeyVerificationMac(_) => EventType::KeyVerificationMac,
AnyToDeviceEventContent::KeyVerificationCancel(_) => EventType::KeyVerificationCancel,
_ => unreachable!(),
};
ToDeviceRequest {
txn_id: Uuid::new_v4().to_string(),
event_type,
messages,
}
}
#[cfg(test)]
mod test {
use proptest::prelude::*;
use super::{bytes_to_decimal, bytes_to_emoji, bytes_to_emoji_index, emoji_from_index};
#[test]
fn test_emoji_generation() {
let bytes = vec![0, 0, 0, 0, 0, 0];
let index: Vec<(&'static str, &'static str)> = vec![0, 0, 0, 0, 0, 0, 0]
.into_iter()
.map(emoji_from_index)
.collect();
assert_eq!(bytes_to_emoji(bytes), index);
let bytes = vec![0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF];
let index: Vec<(&'static str, &'static str)> = vec![63, 63, 63, 63, 63, 63, 63]
.into_iter()
.map(emoji_from_index)
.collect();
assert_eq!(bytes_to_emoji(bytes), index);
}
#[test]
fn test_decimal_generation() {
let bytes = vec![0, 0, 0, 0, 0];
let result = bytes_to_decimal(bytes);
assert_eq!(result, (1000, 1000, 1000));
let bytes = vec![0xFF, 0xFF, 0xFF, 0xFF, 0xFF];
let result = bytes_to_decimal(bytes);
assert_eq!(result, (9191, 9191, 9191));
}
proptest! {
#[test]
fn proptest_emoji(bytes in prop::array::uniform6(0u8..)) {
let numbers = bytes_to_emoji_index(bytes.to_vec());
for number in numbers {
prop_assert!(number < 64);
}
}
}
proptest! {
#[test]
fn proptest_decimals(bytes in prop::array::uniform5(0u8..)) {
let (first, second, third) = bytes_to_decimal(bytes.to_vec());
prop_assert!(first <= 9191 && first >= 1000);
prop_assert!(second <= 9191 && second >= 1000);
prop_assert!(third <= 9191 && third >= 1000);
}
}
}