// From the Filament design doc // https://google.github.io/filament/Filament.html#table_symbols // Symbol Definition // v View unit vector // l Incident light unit vector // n Surface normal unit vector // h Half unit vector between l and v // f BRDF // f_d Diffuse component of a BRDF // f_r Specular component of a BRDF // α Roughness, remapped from using input perceptualRoughness // σ Diffuse reflectance // Ω Spherical domain // f0 Reflectance at normal incidence // f90 Reflectance at grazing angle // χ+(a) Heaviside function (1 if a>0 and 0 otherwise) // nior Index of refraction (IOR) of an interface // ⟨n⋅l⟩ Dot product clamped to [0..1] // ⟨a⟩ Saturated value (clamped to [0..1]) // The Bidirectional Reflectance Distribution Function (BRDF) describes the surface response of a standard material // and consists of two components, the diffuse component (f_d) and the specular component (f_r): // f(v,l) = f_d(v,l) + f_r(v,l) // // The form of the microfacet model is the same for diffuse and specular // f_r(v,l) = f_d(v,l) = 1 / { |n⋅v||n⋅l| } ∫_Ω D(m,α) G(v,l,m) f_m(v,l,m) (v⋅m) (l⋅m) dm // // In which: // D, also called the Normal Distribution Function (NDF) models the distribution of the microfacets // G models the visibility (or occlusion or shadow-masking) of the microfacets // f_m is the microfacet BRDF and differs between specular and diffuse components // // The above integration needs to be approximated. #version 450 const int MAX_LIGHTS = 30; struct Light { mat4 proj; vec4 pos; vec4 color; }; layout(location = 0) in vec3 v_WorldPosition; layout(location = 1) in vec3 v_WorldNormal; layout(location = 2) in vec2 v_Uv; #ifdef STANDARDMATERIAL_NORMAL_MAP layout(location = 3) in vec4 v_WorldTangent; #endif layout(location = 0) out vec4 o_Target; layout(set = 0, binding = 0) uniform CameraViewProj { mat4 ViewProj; }; layout(std140, set = 0, binding = 1) uniform CameraPosition { vec4 CameraPos; }; layout(std140, set = 1, binding = 0) uniform Lights { vec4 AmbientColor; uvec4 NumLights; Light SceneLights[MAX_LIGHTS]; }; layout(set = 3, binding = 0) uniform StandardMaterial_base_color { vec4 base_color; }; #ifdef STANDARDMATERIAL_BASE_COLOR_TEXTURE layout(set = 3, binding = 1) uniform texture2D StandardMaterial_base_color_texture; layout(set = 3, binding = 2) uniform sampler StandardMaterial_base_color_texture_sampler; #endif #ifndef STANDARDMATERIAL_UNLIT layout(set = 3, binding = 3) uniform StandardMaterial_roughness { float perceptual_roughness; }; layout(set = 3, binding = 4) uniform StandardMaterial_metallic { float metallic; }; # ifdef STANDARDMATERIAL_METALLIC_ROUGHNESS_TEXTURE layout(set = 3, binding = 5) uniform texture2D StandardMaterial_metallic_roughness_texture; layout(set = 3, binding = 6) uniform sampler StandardMaterial_metallic_roughness_texture_sampler; # endif layout(set = 3, binding = 7) uniform StandardMaterial_reflectance { float reflectance; }; # ifdef STANDARDMATERIAL_NORMAL_MAP layout(set = 3, binding = 8) uniform texture2D StandardMaterial_normal_map; layout(set = 3, binding = 9) uniform sampler StandardMaterial_normal_map_sampler; # endif # if defined(STANDARDMATERIAL_OCCLUSION_TEXTURE) layout(set = 3, binding = 10) uniform texture2D StandardMaterial_occlusion_texture; layout(set = 3, binding = 11) uniform sampler StandardMaterial_occlusion_texture_sampler; # endif layout(set = 3, binding = 12) uniform StandardMaterial_emissive { vec4 emissive; }; # if defined(STANDARDMATERIAL_EMISSIVE_TEXTURE) layout(set = 3, binding = 13) uniform texture2D StandardMaterial_emissive_texture; layout(set = 3, binding = 14) uniform sampler StandardMaterial_emissive_texture_sampler; # endif # define saturate(x) clamp(x, 0.0, 1.0) const float PI = 3.141592653589793; float pow5(float x) { float x2 = x * x; return x2 * x2 * x; } // distanceAttenuation is simply the square falloff of light intensity // combined with a smooth attenuation at the edge of the light radius // // light radius is a non-physical construct for efficiency purposes, // because otherwise every light affects every fragment in the scene float getDistanceAttenuation(const vec3 posToLight, float inverseRadiusSquared) { float distanceSquare = dot(posToLight, posToLight); float factor = distanceSquare * inverseRadiusSquared; float smoothFactor = saturate(1.0 - factor * factor); float attenuation = smoothFactor * smoothFactor; return attenuation * 1.0 / max(distanceSquare, 1e-4); } // Normal distribution function (specular D) // Based on https://google.github.io/filament/Filament.html#citation-walter07 // D_GGX(h,α) = α^2 / { π ((n⋅h)^2 (α2−1) + 1)^2 } // Simple implementation, has precision problems when using fp16 instead of fp32 // see https://google.github.io/filament/Filament.html#listing_speculardfp16 float D_GGX(float roughness, float NoH, const vec3 h) { float oneMinusNoHSquared = 1.0 - NoH * NoH; float a = NoH * roughness; float k = roughness / (oneMinusNoHSquared + a * a); float d = k * k * (1.0 / PI); return d; } // Visibility function (Specular G) // V(v,l,a) = G(v,l,α) / { 4 (n⋅v) (n⋅l) } // such that f_r becomes // f_r(v,l) = D(h,α) V(v,l,α) F(v,h,f0) // where // V(v,l,α) = 0.5 / { n⋅l sqrt((n⋅v)^2 (1−α2) + α2) + n⋅v sqrt((n⋅l)^2 (1−α2) + α2) } // Note the two sqrt's, that may be slow on mobile, see https://google.github.io/filament/Filament.html#listing_approximatedspecularv float V_SmithGGXCorrelated(float roughness, float NoV, float NoL) { float a2 = roughness * roughness; float lambdaV = NoL * sqrt((NoV - a2 * NoV) * NoV + a2); float lambdaL = NoV * sqrt((NoL - a2 * NoL) * NoL + a2); float v = 0.5 / (lambdaV + lambdaL); return v; } // Fresnel function // see https://google.github.io/filament/Filament.html#citation-schlick94 // F_Schlick(v,h,f_0,f_90) = f_0 + (f_90 − f_0) (1 − v⋅h)^5 vec3 F_Schlick(const vec3 f0, float f90, float VoH) { // not using mix to keep the vec3 and float versions identical return f0 + (f90 - f0) * pow5(1.0 - VoH); } float F_Schlick(float f0, float f90, float VoH) { // not using mix to keep the vec3 and float versions identical return f0 + (f90 - f0) * pow5(1.0 - VoH); } vec3 fresnel(vec3 f0, float LoH) { // f_90 suitable for ambient occlusion // see https://google.github.io/filament/Filament.html#lighting/occlusion float f90 = saturate(dot(f0, vec3(50.0 * 0.33))); return F_Schlick(f0, f90, LoH); } // Specular BRDF // https://google.github.io/filament/Filament.html#materialsystem/specularbrdf // Cook-Torrance approximation of the microfacet model integration using Fresnel law F to model f_m // f_r(v,l) = { D(h,α) G(v,l,α) F(v,h,f0) } / { 4 (n⋅v) (n⋅l) } vec3 specular(vec3 f0, float roughness, const vec3 h, float NoV, float NoL, float NoH, float LoH) { float D = D_GGX(roughness, NoH, h); float V = V_SmithGGXCorrelated(roughness, NoV, NoL); vec3 F = fresnel(f0, LoH); return (D * V) * F; } // Diffuse BRDF // https://google.github.io/filament/Filament.html#materialsystem/diffusebrdf // fd(v,l) = σ/π * 1 / { |n⋅v||n⋅l| } ∫Ω D(m,α) G(v,l,m) (v⋅m) (l⋅m) dm // simplest approximation // float Fd_Lambert() { // return 1.0 / PI; // } // // vec3 Fd = diffuseColor * Fd_Lambert(); // Disney approximation // See https://google.github.io/filament/Filament.html#citation-burley12 // minimal quality difference float Fd_Burley(float roughness, float NoV, float NoL, float LoH) { float f90 = 0.5 + 2.0 * roughness * LoH * LoH; float lightScatter = F_Schlick(1.0, f90, NoL); float viewScatter = F_Schlick(1.0, f90, NoV); return lightScatter * viewScatter * (1.0 / PI); } // From https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile vec3 EnvBRDFApprox(vec3 f0, float perceptual_roughness, float NoV) { const vec4 c0 = { -1, -0.0275, -0.572, 0.022 }; const vec4 c1 = { 1, 0.0425, 1.04, -0.04 }; vec4 r = perceptual_roughness * c0 + c1; float a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y; vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw; return f0 * AB.x + AB.y; } float perceptualRoughnessToRoughness(float perceptualRoughness) { // clamp perceptual roughness to prevent precision problems // According to Filament design 0.089 is recommended for mobile // Filament uses 0.045 for non-mobile float clampedPerceptualRoughness = clamp(perceptualRoughness, 0.089, 1.0); return clampedPerceptualRoughness * clampedPerceptualRoughness; } // from https://64.github.io/tonemapping/ // reinhard on RGB oversaturates colors vec3 reinhard(vec3 color) { return color / (1.0 + color); } vec3 reinhard_extended(vec3 color, float max_white) { vec3 numerator = color * (1.0f + (color / vec3(max_white * max_white))); return numerator / (1.0 + color); } // luminance coefficients from Rec. 709. // https://en.wikipedia.org/wiki/Rec._709 float luminance(vec3 v) { return dot(v, vec3(0.2126, 0.7152, 0.0722)); } vec3 change_luminance(vec3 c_in, float l_out) { float l_in = luminance(c_in); return c_in * (l_out / l_in); } vec3 reinhard_luminance(vec3 color) { float l_old = luminance(color); float l_new = l_old / (1.0f + l_old); return change_luminance(color, l_new); } vec3 reinhard_extended_luminance(vec3 color, float max_white_l) { float l_old = luminance(color); float numerator = l_old * (1.0f + (l_old / (max_white_l * max_white_l))); float l_new = numerator / (1.0f + l_old); return change_luminance(color, l_new); } #endif void main() { vec4 output_color = base_color; #ifdef STANDARDMATERIAL_BASE_COLOR_TEXTURE output_color *= texture(sampler2D(StandardMaterial_base_color_texture, StandardMaterial_base_color_texture_sampler), v_Uv); #endif #ifndef STANDARDMATERIAL_UNLIT // calculate non-linear roughness from linear perceptualRoughness # ifdef STANDARDMATERIAL_METALLIC_ROUGHNESS_TEXTURE vec4 metallic_roughness = texture(sampler2D(StandardMaterial_metallic_roughness_texture, StandardMaterial_metallic_roughness_texture_sampler), v_Uv); // Sampling from GLTF standard channels for now float metallic = metallic * metallic_roughness.b; float perceptual_roughness = perceptual_roughness * metallic_roughness.g; # endif float roughness = perceptualRoughnessToRoughness(perceptual_roughness); vec3 N = normalize(v_WorldNormal); # ifdef STANDARDMATERIAL_NORMAL_MAP vec3 T = normalize(v_WorldTangent.xyz); vec3 B = cross(N, T) * v_WorldTangent.w; # endif # ifdef STANDARDMATERIAL_DOUBLE_SIDED N = gl_FrontFacing ? N : -N; # ifdef STANDARDMATERIAL_NORMAL_MAP T = gl_FrontFacing ? T : -T; B = gl_FrontFacing ? B : -B; # endif # endif # ifdef STANDARDMATERIAL_NORMAL_MAP mat3 TBN = mat3(T, B, N); N = TBN * normalize(texture(sampler2D(StandardMaterial_normal_map, StandardMaterial_normal_map_sampler), v_Uv).rgb * 2.0 - 1.0); # endif # ifdef STANDARDMATERIAL_OCCLUSION_TEXTURE float occlusion = texture(sampler2D(StandardMaterial_occlusion_texture, StandardMaterial_occlusion_texture_sampler), v_Uv).r; # else float occlusion = 1.0; # endif # ifdef STANDARDMATERIAL_EMISSIVE_TEXTURE vec4 emissive = emissive; // TODO use .a for exposure compensation in HDR emissive.rgb *= texture(sampler2D(StandardMaterial_emissive_texture, StandardMaterial_emissive_texture_sampler), v_Uv).rgb; # endif vec3 V = normalize(CameraPos.xyz - v_WorldPosition.xyz); // Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886" float NdotV = max(dot(N, V), 1e-4); // Remapping [0,1] reflectance to F0 // See https://google.github.io/filament/Filament.html#materialsystem/parameterization/remapping vec3 F0 = 0.16 * reflectance * reflectance * (1.0 - metallic) + output_color.rgb * metallic; // Diffuse strength inversely related to metallicity vec3 diffuseColor = output_color.rgb * (1.0 - metallic); // accumulate color vec3 light_accum = vec3(0.0); for (int i = 0; i < int(NumLights.x) && i < MAX_LIGHTS; ++i) { Light light = SceneLights[i]; vec3 lightDir = light.pos.xyz - v_WorldPosition.xyz; vec3 L = normalize(lightDir); float rangeAttenuation = getDistanceAttenuation(lightDir, light.pos.w); vec3 H = normalize(L + V); float NoL = saturate(dot(N, L)); float NoH = saturate(dot(N, H)); float LoH = saturate(dot(L, H)); vec3 specular = specular(F0, roughness, H, NdotV, NoL, NoH, LoH); vec3 diffuse = diffuseColor * Fd_Burley(roughness, NdotV, NoL, LoH); // Lout = f(v,l) Φ / { 4 π d^2 }⟨n⋅l⟩ // where // f(v,l) = (f_d(v,l) + f_r(v,l)) * light_color // Φ is light intensity // our rangeAttentuation = 1 / d^2 multiplied with an attenuation factor for smoothing at the edge of the non-physical maximum light radius // It's not 100% clear where the 1/4π goes in the derivation, but we follow the filament shader and leave it out // See https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminanceEquation // TODO compensate for energy loss https://google.github.io/filament/Filament.html#materialsystem/improvingthebrdfs/energylossinspecularreflectance // light.color.rgb is premultiplied with light.intensity on the CPU light_accum += ((diffuse + specular) * light.color.rgb) * (rangeAttenuation * NoL); } vec3 diffuse_ambient = EnvBRDFApprox(diffuseColor, 1.0, NdotV); vec3 specular_ambient = EnvBRDFApprox(F0, perceptual_roughness, NdotV); output_color.rgb = light_accum; output_color.rgb += (diffuse_ambient + specular_ambient) * AmbientColor.xyz * occlusion; output_color.rgb += emissive.rgb * output_color.a; // tone_mapping output_color.rgb = reinhard_luminance(output_color.rgb); // Gamma correction. // Not needed with sRGB buffer // output_color.rgb = pow(output_color.rgb, vec3(1.0 / 2.2)); #endif o_Target = output_color; }