Compare commits

...

5 Commits

Author SHA1 Message Date
annieversary 03ebb738f3 light friends :) 2021-10-02 23:48:07 +02:00
annieversary 9a0c360172 change camera movement 2021-10-02 00:54:54 +02:00
annieversary 6b2075c2a4 idk 2021-10-01 19:56:26 +02:00
annieversary d727f52ff0 move some stuff or idk 2021-10-01 14:30:23 +02:00
annieversary f101e735f6 increase max num of lights 2021-10-01 12:50:56 +02:00
13 changed files with 845 additions and 82 deletions

10
Cargo.lock generated
View File

@ -457,6 +457,15 @@ dependencies = [
"glam 0.13.1",
]
[[package]]
name = "bevy_mod_raycast"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2b699d78034aaf5730a4c10a09fd5a2e6886964a42fa7453b9e5f8b926cd846e"
dependencies = [
"bevy",
]
[[package]]
name = "bevy_pbr"
version = "0.5.0"
@ -2124,6 +2133,7 @@ name = "moria"
version = "0.1.0"
dependencies = [
"bevy",
"bevy_mod_raycast",
]
[[package]]

View File

@ -7,3 +7,4 @@ edition = "2018"
[dependencies]
bevy = "0.5.0"
bevy_mod_raycast = "0.2.2"

BIN
assets/textures/floor.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.7 KiB

58
src/camera.rs Normal file
View File

@ -0,0 +1,58 @@
use bevy::prelude::*;
use bevy_mod_raycast::{RayCastMethod, RayCastSource};
use crate::player::*;
pub struct MyRaycastSet;
pub struct Camera;
pub fn spawn_camera(commands: &mut Commands) {
commands
.spawn_bundle(PerspectiveCameraBundle::default())
.insert(Camera)
.insert(RayCastSource::<MyRaycastSet>::new());
}
pub fn camera_follow_player(
player: Query<(&Transform, &Player), Without<Camera>>,
mut camera: Query<(&mut Transform, &Camera), Without<Player>>,
) {
let player_pos = if let Some(player) = player.iter().next() {
player.0.translation
} else {
return;
};
for (mut trans, _) in camera.iter_mut() {
trans.translation = player_pos + Vec3::new(-50.0, 100.0, 50.0);
trans.look_at(player_pos, Vec3::Y);
}
}
// update our `RayCastSource` with the current cursor position every frame.
pub fn update_raycast_with_cursor(
mut cursor: EventReader<CursorMoved>,
mut query: Query<&mut RayCastSource<MyRaycastSet>>,
) {
for mut pick_source in query.iter_mut() {
// Grab the most recent cursor event if it exists:
if let Some(cursor_latest) = cursor.iter().last() {
pick_source.cast_method = RayCastMethod::Screenspace(cursor_latest.position);
}
}
}
#[derive(Default)]
pub struct MouseCoords(pub Vec3);
// Update our `RayCastSource` with the current cursor position every frame.
pub fn update_mouse_coords(
query: Query<&RayCastSource<MyRaycastSet>>,
mut coords: ResMut<MouseCoords>,
) {
for pick_source in query.iter() {
if let Some((_, intersection)) = pick_source.intersect_top() {
coords.0 = intersection.position();
}
}
}

View File

@ -1,3 +1,5 @@
#![allow(dead_code)]
use bevy::prelude::*;
const DIS: f32 = 300.0;

View File

@ -2,6 +2,8 @@ use bevy::prelude::*;
use crate::player::Player;
const RANGE: f32 = 25.0;
pub struct LightBall;
pub fn light_up_ball_when_close_to_player(
mut commands: Commands,
@ -23,17 +25,17 @@ pub fn light_up_ball_when_close_to_player(
for (entity, trans, _, mut material, light) in thingies.iter_mut() {
let dis = trans.translation.distance(player_pos);
if dis < 20.0 {
if dis < RANGE {
*material = materials.lit.clone();
// change intensity,
// add light if there isn't one
if let Some(mut l) = light {
l.intensity = 300.0 * (20.0 - dis) / 20.0;
l.intensity = 300.0 * (RANGE - dis) / RANGE;
} else {
commands.entity(entity).insert(Light {
color: Color::rgb(15.0, 15.0, 15.0),
intensity: 300.0 * (20.0 - dis) / 20.0,
intensity: 300.0 * (RANGE - dis) / RANGE,
..Default::default()
});
}

33
src/loading.rs Normal file
View File

@ -0,0 +1,33 @@
use bevy::{
prelude::*,
render::texture::{AddressMode, FilterMode},
};
use crate::AppState;
pub struct LoadedAssets {
pub floor: Handle<Texture>,
}
impl FromWorld for LoadedAssets {
fn from_world(world: &mut World) -> Self {
let server = world.get_resource::<AssetServer>().unwrap();
let floor = server.load("textures/floor.png");
Self { floor }
}
}
pub fn loading(
assets: Res<LoadedAssets>,
mut textures: ResMut<Assets<Texture>>,
mut state: ResMut<State<AppState>>,
) {
if let Some(t) = textures.get_mut(&assets.floor) {
t.sampler.address_mode_u = AddressMode::MirrorRepeat;
t.sampler.address_mode_v = AddressMode::Repeat;
t.sampler.address_mode_w = AddressMode::Repeat;
t.sampler.mipmap_filter = FilterMode::Linear;
state.set(AppState::Game).unwrap();
}
}

View File

@ -1,53 +1,110 @@
use bevy::{input::system::exit_on_esc_system, pbr::AmbientLight, prelude::*};
use bevy_mod_raycast::{build_rays, update_raycast, PluginState, RayCastMesh, RaycastSystem};
mod light_balls;
use light_balls::*;
mod player;
use player::*;
mod camera;
mod columns;
use columns::*;
mod light_balls;
mod loading;
mod player;
mod rendering;
use camera::*;
use light_balls::*;
use player::*;
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum AppState {
Loading,
Game,
}
fn main() {
App::build()
.insert_resource(Msaa { samples: 4 })
.add_plugins(DefaultPlugins)
.insert_resource(ClearColor(Color::rgb(0.0, 0.0, 0.0)))
.add_plugins(rendering::CustomPlugins)
.init_resource::<LightBallMaterials>()
.add_startup_system(setup.system())
.add_system(exit_on_esc_system.system())
.add_system(light_movement.system())
.add_system(move_player.system())
.add_system(camera_follow_player.system())
.add_system(light_up_ball_when_close_to_player.system())
.init_resource::<MouseCoords>()
.init_resource::<FloatingOrbsInterpolationState>()
.init_resource::<loading::LoadedAssets>()
.add_state(AppState::Loading)
// raycasting
.init_resource::<PluginState<MyRaycastSet>>()
.add_system_to_stage(
CoreStage::PostUpdate,
build_rays::<MyRaycastSet>
.system()
.label(RaycastSystem::BuildRays),
)
.add_system_to_stage(
CoreStage::PostUpdate,
update_raycast::<MyRaycastSet>
.system()
.label(RaycastSystem::UpdateRaycast)
.after(RaycastSystem::BuildRays),
)
.add_system_to_stage(
CoreStage::PreUpdate,
update_raycast_with_cursor
.system()
.before(RaycastSystem::BuildRays),
)
// loading
.add_system_set(
SystemSet::on_update(AppState::Loading).with_system(loading::loading.system()),
)
// game
.add_system_set(SystemSet::on_enter(AppState::Game).with_system(setup.system()))
.add_system_set(
SystemSet::on_update(AppState::Game)
.with_system(update_mouse_coords.system())
.with_system(exit_on_esc_system.system())
.with_system(light_movement.system())
.with_system(move_light_friends.system())
.with_system(update_floating_orbs_interpolation.system())
.with_system(move_player.system())
.with_system(camera_follow_player.system())
.with_system(light_up_ball_when_close_to_player.system()),
)
.run();
}
pub struct Camera;
/// set up a simple 3D scene
fn setup(
mut commands: Commands,
assets: Res<loading::LoadedAssets>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut ambient: ResMut<AmbientLight>,
light_ball_materials: Res<LightBallMaterials>,
) {
// set ambient light to 0
// set ambient light to very low
ambient.color = Color::rgb(0.3, 0.3, 0.3);
ambient.brightness = 0.02;
ambient.brightness = 0.01;
// floor
let mut floor_material: StandardMaterial = Color::rgb(0.1, 0.1, 0.1).into();
let mut floor_material = StandardMaterial {
base_color_texture: Some(assets.floor.clone()),
base_color: Color::rgb(0.3, 0.3, 0.3),
..Default::default()
};
floor_material.metallic = 0.0;
floor_material.reflectance = 0.0;
let floor_material = materials.add(floor_material);
commands.spawn_bundle(PbrBundle {
mesh: meshes.add(Mesh::from(shape::Plane { size: 10000.0 })),
material: floor_material,
..Default::default()
});
for i in -10..10 {
for j in -10..10 {
commands
.spawn_bundle(PbrBundle {
mesh: meshes.add(Mesh::from(shape::Plane { size: 100.0 })),
material: floor_material.clone(),
transform: Transform::from_xyz(100.0 * i as f32, 0.0, 100.0 * j as f32),
..Default::default()
})
.insert(RayCastMesh::<camera::MyRaycastSet>::default());
}
}
// columns
spawn_columns(&mut commands, &mut meshes, &mut materials);
// columns::spawn_columns(&mut commands, &mut meshes, &mut materials);
// player
spawn_player(&mut commands, &mut meshes, &mut materials);
@ -57,20 +114,15 @@ fn setup(
spawn_light_ball(
&mut commands,
&light_ball_materials,
Vec3::new(i as f32 * 30.0, 2.0, 6.0),
Vec3::new(i as f32 * 30.0, 2.0, 10.0),
);
spawn_light_ball(
&mut commands,
&light_ball_materials,
Vec3::new(i as f32 * 30.0, 2.0, -6.0),
Vec3::new(i as f32 * 30.0, 2.0, -10.0),
);
}
// camera
commands
.spawn_bundle(PerspectiveCameraBundle {
transform: Transform::from_xyz(-20.0, 100.0, 50.0).looking_at(Vec3::ZERO, Vec3::Y),
..Default::default()
})
.insert(Camera);
spawn_camera(&mut commands);
}

View File

@ -1,6 +1,6 @@
use bevy::prelude::*;
use crate::Camera;
use crate::camera::MouseCoords;
pub struct Player;
pub struct PlayerLight {
@ -19,20 +19,26 @@ pub fn spawn_player(
..Default::default()
})),
material: materials.add(Color::rgb(1.0, 1.0, 1.0).into()),
transform: Transform::from_xyz(33.0, 1.0, 0.0),
transform: Transform::from_xyz(0.0, 1.0, 0.0),
..Default::default()
})
.insert(Player)
.with_children(|parent| {
// light
let mut light_material: StandardMaterial = Color::rgb(0.3, 0.5, 0.3).into();
light_material.metallic = 0.5;
light_material.reflectance = 0.5;
light_material.emissive = Color::rgb(15.0, 15.0, 15.0);
let light_material = materials.add(light_material);
.insert(Player);
for i in 0..5 {
parent
// light
let mut light_material: StandardMaterial = Color::rgb(0.737255, 0.560784, 0.560784).into();
light_material.metallic = 0.5;
light_material.reflectance = 0.5;
light_material.emissive = Color::rgb(7.52, 5.72, 5.72);
let light_material = materials.add(light_material);
commands
.spawn()
.insert(LightFriends)
.insert(Transform::default())
.insert(GlobalTransform::default())
.with_children(|children| {
for i in 0..6 {
children
.spawn_bundle(PbrBundle {
mesh: meshes.add(Mesh::from(shape::Icosphere {
radius: 0.2,
@ -45,6 +51,7 @@ pub fn spawn_player(
.insert_bundle(LightBundle {
transform: Transform::from_xyz(0.0, 0.0, 0.0),
light: Light {
color: Color::rgb(7.52, 5.72, 5.72),
..Default::default()
},
..Default::default()
@ -54,14 +61,56 @@ pub fn spawn_player(
});
}
pub struct LightFriends;
pub fn move_light_friends(
mut query: Query<(&mut Transform, &LightFriends)>,
player: Query<(&Transform, &Player), Without<LightFriends>>,
coords: Res<MouseCoords>,
interpolation: Res<FloatingOrbsInterpolationState>,
time: Res<Time>,
) {
let player_pos = if let Some(player) = player.iter().next() {
player.0.translation
} else {
return;
};
for (mut trans, _light) in query.iter_mut() {
// interpolate between player pos and mouse click pos
let i = interpolation.0;
let center = i * coords.0 + (1.0 - i) * player_pos;
let mut d = trans.translation - center;
d.y = 0.0;
trans.translation -= d * time.delta_seconds();
}
}
pub fn light_movement(mut query: Query<(&mut Transform, &PlayerLight)>, time: Res<Time>) {
let t = time.seconds_since_startup();
for (mut trans, light) in query.iter_mut() {
let i = light.i as f64;
let i2 = i / 2.0;
trans.translation.y = 6.0 * (t * 1.1 * i2 + i).sin() as f32 + 7.0;
trans.translation.x = 5.0 * i2 as f32 * (t * 0.4 * i2 + i).cos() as f32;
trans.translation.z = 5.0 * (t * 0.4 * i + i).sin() as f32;
trans.translation = Vec3::new(
5.0 * i2 as f32 * (t * 0.4 * i2 + i).cos() as f32,
3.0 * (t * 1.1 * i2 + i).sin() as f32 + 4.0,
5.0 * (t * 0.4 * i + i).sin() as f32,
);
}
}
#[derive(Default)]
pub struct FloatingOrbsInterpolationState(f32);
pub fn update_floating_orbs_interpolation(
mut state: ResMut<FloatingOrbsInterpolationState>,
input: Res<Input<MouseButton>>,
time: Res<Time>,
) {
let ds = time.delta_seconds();
if input.pressed(MouseButton::Left) {
state.0 = (state.0 + 0.5 * ds).clamp(0.0, 1.0);
} else {
state.0 = (state.0 - ds).clamp(0.0, 1.0);
}
}
@ -72,9 +121,6 @@ pub fn move_player(
) {
let ds = time.delta_seconds() * 5.0;
// TODO rotate according to camera position
// but make it snap to coord system
for (mut transform, _) in query.iter_mut() {
if input.pressed(KeyCode::W) {
transform.translation += Vec3::X * ds;
@ -90,32 +136,3 @@ pub fn move_player(
}
}
}
pub fn camera_follow_player(
player: Query<(&Transform, &Player), Without<Camera>>,
mut camera: Query<(&mut Transform, &Camera), Without<Player>>,
time: Res<Time>,
) {
let player_pos = if let Some(player) = player.iter().next() {
player.0.translation
} else {
return;
};
let ds = time.delta_seconds() * 5.0;
for (mut trans, _) in camera.iter_mut() {
trans.look_at(player_pos, Vec3::Y);
// keep a distance to the player
if trans.translation.distance(player_pos) > 170.0 {
let mut d = trans.rotation * Vec3::Z * ds;
d.y = 0.0;
trans.translation -= d;
}
if trans.translation.distance(player_pos) < 100.0 {
let mut d = trans.rotation * Vec3::Z * ds;
d.y = 0.0;
trans.translation += d;
}
}
}

102
src/rendering/mod.rs Normal file
View File

@ -0,0 +1,102 @@
use bevy::app::{PluginGroup, PluginGroupBuilder};
use bevy::pbr::render_graph::{LightsNode, PBR_PIPELINE_HANDLE};
use bevy::prelude::*;
use bevy::render::{
pipeline::PipelineDescriptor,
render_graph::{base, AssetRenderResourcesNode, RenderGraph, RenderResourcesNode},
shader::Shader,
};
mod pipeline;
use pipeline::build_pbr_pipeline;
pub struct CustomPlugins;
impl PluginGroup for CustomPlugins {
fn build(&mut self, group: &mut PluginGroupBuilder) {
group.add(bevy::log::LogPlugin::default());
group.add(bevy::core::CorePlugin::default());
group.add(bevy::transform::TransformPlugin::default());
group.add(bevy::diagnostic::DiagnosticsPlugin::default());
group.add(bevy::input::InputPlugin::default());
group.add(bevy::window::WindowPlugin::default());
group.add(bevy::asset::AssetPlugin::default());
group.add(bevy::scene::ScenePlugin::default());
group.add(bevy::render::RenderPlugin::default());
group.add(bevy::sprite::SpritePlugin::default());
group.add(CustomPbrPlugin::default());
group.add(bevy::ui::UiPlugin::default());
group.add(bevy::text::TextPlugin::default());
group.add(bevy::gilrs::GilrsPlugin::default());
group.add(bevy::gltf::GltfPlugin::default());
group.add(bevy::winit::WinitPlugin::default());
group.add(bevy::wgpu::WgpuPlugin::default());
}
}
#[derive(Default)]
pub struct CustomPbrPlugin;
impl Plugin for CustomPbrPlugin {
fn build(&self, app: &mut AppBuilder) {
app.add_asset::<StandardMaterial>()
.register_type::<Light>()
.add_system_to_stage(
CoreStage::PostUpdate,
bevy::render::shader::asset_shader_defs_system::<StandardMaterial>.system(),
)
.init_resource::<bevy::pbr::AmbientLight>();
add_pbr_graph(app.world_mut());
// add default StandardMaterial
let mut materials = app
.world_mut()
.get_resource_mut::<Assets<StandardMaterial>>()
.unwrap();
materials.set_untracked(
Handle::<StandardMaterial>::default(),
StandardMaterial {
base_color: Color::PINK,
unlit: true,
..Default::default()
},
);
}
}
/// the names of pbr graph nodes
mod node {
pub const TRANSFORM: &str = "transform";
pub const STANDARD_MATERIAL: &str = "standard_material";
pub const LIGHTS: &str = "lights";
}
fn add_pbr_graph(world: &mut World) {
{
let mut graph = world.get_resource_mut::<RenderGraph>().unwrap();
graph.add_system_node(
node::TRANSFORM,
RenderResourcesNode::<GlobalTransform>::new(true),
);
graph.add_system_node(
node::STANDARD_MATERIAL,
AssetRenderResourcesNode::<StandardMaterial>::new(true),
);
graph.add_system_node(node::LIGHTS, LightsNode::new(30));
// TODO: replace these with "autowire" groups
graph
.add_node_edge(node::STANDARD_MATERIAL, base::node::MAIN_PASS)
.unwrap();
graph
.add_node_edge(node::TRANSFORM, base::node::MAIN_PASS)
.unwrap();
graph
.add_node_edge(node::LIGHTS, base::node::MAIN_PASS)
.unwrap();
}
let pipeline = build_pbr_pipeline(&mut world.get_resource_mut::<Assets<Shader>>().unwrap());
let mut pipelines = world
.get_resource_mut::<Assets<PipelineDescriptor>>()
.unwrap();
pipelines.set_untracked(PBR_PIPELINE_HANDLE, pipeline);
}

392
src/rendering/pbr.frag Normal file
View File

@ -0,0 +1,392 @@
// From the Filament design doc
// https://google.github.io/filament/Filament.html#table_symbols
// Symbol Definition
// v View unit vector
// l Incident light unit vector
// n Surface normal unit vector
// h Half unit vector between l and v
// f BRDF
// f_d Diffuse component of a BRDF
// f_r Specular component of a BRDF
// α Roughness, remapped from using input perceptualRoughness
// σ Diffuse reflectance
// Ω Spherical domain
// f0 Reflectance at normal incidence
// f90 Reflectance at grazing angle
// χ+(a) Heaviside function (1 if a>0 and 0 otherwise)
// nior Index of refraction (IOR) of an interface
// ⟨n⋅l⟩ Dot product clamped to [0..1]
// ⟨a⟩ Saturated value (clamped to [0..1])
// The Bidirectional Reflectance Distribution Function (BRDF) describes the surface response of a standard material
// and consists of two components, the diffuse component (f_d) and the specular component (f_r):
// f(v,l) = f_d(v,l) + f_r(v,l)
//
// The form of the microfacet model is the same for diffuse and specular
// f_r(v,l) = f_d(v,l) = 1 / { |n⋅v||n⋅l| } ∫_Ω D(m,α) G(v,l,m) f_m(v,l,m) (v⋅m) (l⋅m) dm
//
// In which:
// D, also called the Normal Distribution Function (NDF) models the distribution of the microfacets
// G models the visibility (or occlusion or shadow-masking) of the microfacets
// f_m is the microfacet BRDF and differs between specular and diffuse components
//
// The above integration needs to be approximated.
#version 450
const int MAX_LIGHTS = 30;
struct Light {
mat4 proj;
vec4 pos;
vec4 color;
};
layout(location = 0) in vec3 v_WorldPosition;
layout(location = 1) in vec3 v_WorldNormal;
layout(location = 2) in vec2 v_Uv;
#ifdef STANDARDMATERIAL_NORMAL_MAP
layout(location = 3) in vec4 v_WorldTangent;
#endif
layout(location = 0) out vec4 o_Target;
layout(set = 0, binding = 0) uniform CameraViewProj {
mat4 ViewProj;
};
layout(std140, set = 0, binding = 1) uniform CameraPosition {
vec4 CameraPos;
};
layout(std140, set = 1, binding = 0) uniform Lights {
vec4 AmbientColor;
uvec4 NumLights;
Light SceneLights[MAX_LIGHTS];
};
layout(set = 3, binding = 0) uniform StandardMaterial_base_color {
vec4 base_color;
};
#ifdef STANDARDMATERIAL_BASE_COLOR_TEXTURE
layout(set = 3, binding = 1) uniform texture2D StandardMaterial_base_color_texture;
layout(set = 3,
binding = 2) uniform sampler StandardMaterial_base_color_texture_sampler;
#endif
#ifndef STANDARDMATERIAL_UNLIT
layout(set = 3, binding = 3) uniform StandardMaterial_roughness {
float perceptual_roughness;
};
layout(set = 3, binding = 4) uniform StandardMaterial_metallic {
float metallic;
};
# ifdef STANDARDMATERIAL_METALLIC_ROUGHNESS_TEXTURE
layout(set = 3, binding = 5) uniform texture2D StandardMaterial_metallic_roughness_texture;
layout(set = 3,
binding = 6) uniform sampler StandardMaterial_metallic_roughness_texture_sampler;
# endif
layout(set = 3, binding = 7) uniform StandardMaterial_reflectance {
float reflectance;
};
# ifdef STANDARDMATERIAL_NORMAL_MAP
layout(set = 3, binding = 8) uniform texture2D StandardMaterial_normal_map;
layout(set = 3,
binding = 9) uniform sampler StandardMaterial_normal_map_sampler;
# endif
# if defined(STANDARDMATERIAL_OCCLUSION_TEXTURE)
layout(set = 3, binding = 10) uniform texture2D StandardMaterial_occlusion_texture;
layout(set = 3,
binding = 11) uniform sampler StandardMaterial_occlusion_texture_sampler;
# endif
layout(set = 3, binding = 12) uniform StandardMaterial_emissive {
vec4 emissive;
};
# if defined(STANDARDMATERIAL_EMISSIVE_TEXTURE)
layout(set = 3, binding = 13) uniform texture2D StandardMaterial_emissive_texture;
layout(set = 3,
binding = 14) uniform sampler StandardMaterial_emissive_texture_sampler;
# endif
# define saturate(x) clamp(x, 0.0, 1.0)
const float PI = 3.141592653589793;
float pow5(float x) {
float x2 = x * x;
return x2 * x2 * x;
}
// distanceAttenuation is simply the square falloff of light intensity
// combined with a smooth attenuation at the edge of the light radius
//
// light radius is a non-physical construct for efficiency purposes,
// because otherwise every light affects every fragment in the scene
float getDistanceAttenuation(const vec3 posToLight, float inverseRadiusSquared) {
float distanceSquare = dot(posToLight, posToLight);
float factor = distanceSquare * inverseRadiusSquared;
float smoothFactor = saturate(1.0 - factor * factor);
float attenuation = smoothFactor * smoothFactor;
return attenuation * 1.0 / max(distanceSquare, 1e-4);
}
// Normal distribution function (specular D)
// Based on https://google.github.io/filament/Filament.html#citation-walter07
// D_GGX(h,α) = α^2 / { π ((n⋅h)^2 (α21) + 1)^2 }
// Simple implementation, has precision problems when using fp16 instead of fp32
// see https://google.github.io/filament/Filament.html#listing_speculardfp16
float D_GGX(float roughness, float NoH, const vec3 h) {
float oneMinusNoHSquared = 1.0 - NoH * NoH;
float a = NoH * roughness;
float k = roughness / (oneMinusNoHSquared + a * a);
float d = k * k * (1.0 / PI);
return d;
}
// Visibility function (Specular G)
// V(v,l,a) = G(v,l,α) / { 4 (n⋅v) (n⋅l) }
// such that f_r becomes
// f_r(v,l) = D(h,α) V(v,l,α) F(v,h,f0)
// where
// V(v,l,α) = 0.5 / { n⋅l sqrt((n⋅v)^2 (1α2) + α2) + n⋅v sqrt((n⋅l)^2 (1α2) + α2) }
// Note the two sqrt's, that may be slow on mobile, see https://google.github.io/filament/Filament.html#listing_approximatedspecularv
float V_SmithGGXCorrelated(float roughness, float NoV, float NoL) {
float a2 = roughness * roughness;
float lambdaV = NoL * sqrt((NoV - a2 * NoV) * NoV + a2);
float lambdaL = NoV * sqrt((NoL - a2 * NoL) * NoL + a2);
float v = 0.5 / (lambdaV + lambdaL);
return v;
}
// Fresnel function
// see https://google.github.io/filament/Filament.html#citation-schlick94
// F_Schlick(v,h,f_0,f_90) = f_0 + (f_90 f_0) (1 v⋅h)^5
vec3 F_Schlick(const vec3 f0, float f90, float VoH) {
// not using mix to keep the vec3 and float versions identical
return f0 + (f90 - f0) * pow5(1.0 - VoH);
}
float F_Schlick(float f0, float f90, float VoH) {
// not using mix to keep the vec3 and float versions identical
return f0 + (f90 - f0) * pow5(1.0 - VoH);
}
vec3 fresnel(vec3 f0, float LoH) {
// f_90 suitable for ambient occlusion
// see https://google.github.io/filament/Filament.html#lighting/occlusion
float f90 = saturate(dot(f0, vec3(50.0 * 0.33)));
return F_Schlick(f0, f90, LoH);
}
// Specular BRDF
// https://google.github.io/filament/Filament.html#materialsystem/specularbrdf
// Cook-Torrance approximation of the microfacet model integration using Fresnel law F to model f_m
// f_r(v,l) = { D(h,α) G(v,l,α) F(v,h,f0) } / { 4 (n⋅v) (n⋅l) }
vec3 specular(vec3 f0, float roughness, const vec3 h, float NoV, float NoL,
float NoH, float LoH) {
float D = D_GGX(roughness, NoH, h);
float V = V_SmithGGXCorrelated(roughness, NoV, NoL);
vec3 F = fresnel(f0, LoH);
return (D * V) * F;
}
// Diffuse BRDF
// https://google.github.io/filament/Filament.html#materialsystem/diffusebrdf
// fd(v,l) = σ/π * 1 / { |n⋅v||n⋅l| } ∫Ω D(m,α) G(v,l,m) (v⋅m) (l⋅m) dm
// simplest approximation
// float Fd_Lambert() {
// return 1.0 / PI;
// }
//
// vec3 Fd = diffuseColor * Fd_Lambert();
// Disney approximation
// See https://google.github.io/filament/Filament.html#citation-burley12
// minimal quality difference
float Fd_Burley(float roughness, float NoV, float NoL, float LoH) {
float f90 = 0.5 + 2.0 * roughness * LoH * LoH;
float lightScatter = F_Schlick(1.0, f90, NoL);
float viewScatter = F_Schlick(1.0, f90, NoV);
return lightScatter * viewScatter * (1.0 / PI);
}
// From https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
vec3 EnvBRDFApprox(vec3 f0, float perceptual_roughness, float NoV) {
const vec4 c0 = { -1, -0.0275, -0.572, 0.022 };
const vec4 c1 = { 1, 0.0425, 1.04, -0.04 };
vec4 r = perceptual_roughness * c0 + c1;
float a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;
vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw;
return f0 * AB.x + AB.y;
}
float perceptualRoughnessToRoughness(float perceptualRoughness) {
// clamp perceptual roughness to prevent precision problems
// According to Filament design 0.089 is recommended for mobile
// Filament uses 0.045 for non-mobile
float clampedPerceptualRoughness = clamp(perceptualRoughness, 0.089, 1.0);
return clampedPerceptualRoughness * clampedPerceptualRoughness;
}
// from https://64.github.io/tonemapping/
// reinhard on RGB oversaturates colors
vec3 reinhard(vec3 color) {
return color / (1.0 + color);
}
vec3 reinhard_extended(vec3 color, float max_white) {
vec3 numerator = color * (1.0f + (color / vec3(max_white * max_white)));
return numerator / (1.0 + color);
}
// luminance coefficients from Rec. 709.
// https://en.wikipedia.org/wiki/Rec._709
float luminance(vec3 v) {
return dot(v, vec3(0.2126, 0.7152, 0.0722));
}
vec3 change_luminance(vec3 c_in, float l_out) {
float l_in = luminance(c_in);
return c_in * (l_out / l_in);
}
vec3 reinhard_luminance(vec3 color) {
float l_old = luminance(color);
float l_new = l_old / (1.0f + l_old);
return change_luminance(color, l_new);
}
vec3 reinhard_extended_luminance(vec3 color, float max_white_l) {
float l_old = luminance(color);
float numerator = l_old * (1.0f + (l_old / (max_white_l * max_white_l)));
float l_new = numerator / (1.0f + l_old);
return change_luminance(color, l_new);
}
#endif
void main() {
vec4 output_color = base_color;
#ifdef STANDARDMATERIAL_BASE_COLOR_TEXTURE
output_color *= texture(sampler2D(StandardMaterial_base_color_texture,
StandardMaterial_base_color_texture_sampler),
v_Uv);
#endif
#ifndef STANDARDMATERIAL_UNLIT
// calculate non-linear roughness from linear perceptualRoughness
# ifdef STANDARDMATERIAL_METALLIC_ROUGHNESS_TEXTURE
vec4 metallic_roughness = texture(sampler2D(StandardMaterial_metallic_roughness_texture, StandardMaterial_metallic_roughness_texture_sampler), v_Uv);
// Sampling from GLTF standard channels for now
float metallic = metallic * metallic_roughness.b;
float perceptual_roughness = perceptual_roughness * metallic_roughness.g;
# endif
float roughness = perceptualRoughnessToRoughness(perceptual_roughness);
vec3 N = normalize(v_WorldNormal);
# ifdef STANDARDMATERIAL_NORMAL_MAP
vec3 T = normalize(v_WorldTangent.xyz);
vec3 B = cross(N, T) * v_WorldTangent.w;
# endif
# ifdef STANDARDMATERIAL_DOUBLE_SIDED
N = gl_FrontFacing ? N : -N;
# ifdef STANDARDMATERIAL_NORMAL_MAP
T = gl_FrontFacing ? T : -T;
B = gl_FrontFacing ? B : -B;
# endif
# endif
# ifdef STANDARDMATERIAL_NORMAL_MAP
mat3 TBN = mat3(T, B, N);
N = TBN * normalize(texture(sampler2D(StandardMaterial_normal_map, StandardMaterial_normal_map_sampler), v_Uv).rgb * 2.0 - 1.0);
# endif
# ifdef STANDARDMATERIAL_OCCLUSION_TEXTURE
float occlusion = texture(sampler2D(StandardMaterial_occlusion_texture, StandardMaterial_occlusion_texture_sampler), v_Uv).r;
# else
float occlusion = 1.0;
# endif
# ifdef STANDARDMATERIAL_EMISSIVE_TEXTURE
vec4 emissive = emissive;
// TODO use .a for exposure compensation in HDR
emissive.rgb *= texture(sampler2D(StandardMaterial_emissive_texture, StandardMaterial_emissive_texture_sampler), v_Uv).rgb;
# endif
vec3 V = normalize(CameraPos.xyz - v_WorldPosition.xyz);
// Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886"
float NdotV = max(dot(N, V), 1e-4);
// Remapping [0,1] reflectance to F0
// See https://google.github.io/filament/Filament.html#materialsystem/parameterization/remapping
vec3 F0 = 0.16 * reflectance * reflectance * (1.0 - metallic) + output_color.rgb * metallic;
// Diffuse strength inversely related to metallicity
vec3 diffuseColor = output_color.rgb * (1.0 - metallic);
// accumulate color
vec3 light_accum = vec3(0.0);
for (int i = 0; i < int(NumLights.x) && i < MAX_LIGHTS; ++i) {
Light light = SceneLights[i];
vec3 lightDir = light.pos.xyz - v_WorldPosition.xyz;
vec3 L = normalize(lightDir);
float rangeAttenuation =
getDistanceAttenuation(lightDir, light.pos.w);
vec3 H = normalize(L + V);
float NoL = saturate(dot(N, L));
float NoH = saturate(dot(N, H));
float LoH = saturate(dot(L, H));
vec3 specular = specular(F0, roughness, H, NdotV, NoL, NoH, LoH);
vec3 diffuse = diffuseColor * Fd_Burley(roughness, NdotV, NoL, LoH);
// Lout = f(v,l) Φ / { 4 π d^2 }⟨n⋅l⟩
// where
// f(v,l) = (f_d(v,l) + f_r(v,l)) * light_color
// Φ is light intensity
// our rangeAttentuation = 1 / d^2 multiplied with an attenuation factor for smoothing at the edge of the non-physical maximum light radius
// It's not 100% clear where the 1/4π goes in the derivation, but we follow the filament shader and leave it out
// See https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminanceEquation
// TODO compensate for energy loss https://google.github.io/filament/Filament.html#materialsystem/improvingthebrdfs/energylossinspecularreflectance
// light.color.rgb is premultiplied with light.intensity on the CPU
light_accum +=
((diffuse + specular) * light.color.rgb) * (rangeAttenuation * NoL);
}
vec3 diffuse_ambient = EnvBRDFApprox(diffuseColor, 1.0, NdotV);
vec3 specular_ambient = EnvBRDFApprox(F0, perceptual_roughness, NdotV);
output_color.rgb = light_accum;
output_color.rgb += (diffuse_ambient + specular_ambient) * AmbientColor.xyz * occlusion;
output_color.rgb += emissive.rgb * output_color.a;
// tone_mapping
output_color.rgb = reinhard_luminance(output_color.rgb);
// Gamma correction.
// Not needed with sRGB buffer
// output_color.rgb = pow(output_color.rgb, vec3(1.0 / 2.2));
#endif
o_Target = output_color;
}

36
src/rendering/pbr.vert Normal file
View File

@ -0,0 +1,36 @@
#version 450
layout(location = 0) in vec3 Vertex_Position;
layout(location = 1) in vec3 Vertex_Normal;
layout(location = 2) in vec2 Vertex_Uv;
#ifdef STANDARDMATERIAL_NORMAL_MAP
layout(location = 3) in vec4 Vertex_Tangent;
#endif
layout(location = 0) out vec3 v_WorldPosition;
layout(location = 1) out vec3 v_WorldNormal;
layout(location = 2) out vec2 v_Uv;
layout(set = 0, binding = 0) uniform CameraViewProj {
mat4 ViewProj;
};
#ifdef STANDARDMATERIAL_NORMAL_MAP
layout(location = 3) out vec4 v_WorldTangent;
#endif
layout(set = 2, binding = 0) uniform Transform {
mat4 Model;
};
void main() {
vec4 world_position = Model * vec4(Vertex_Position, 1.0);
v_WorldPosition = world_position.xyz;
v_WorldNormal = mat3(Model) * Vertex_Normal;
v_Uv = Vertex_Uv;
#ifdef STANDARDMATERIAL_NORMAL_MAP
v_WorldTangent = vec4(mat3(Model) * Vertex_Tangent.xyz, Vertex_Tangent.w);
#endif
gl_Position = ViewProj * world_position;
}

58
src/rendering/pipeline.rs Normal file
View File

@ -0,0 +1,58 @@
use bevy::asset::Assets;
use bevy::render::{
pipeline::{
BlendFactor, BlendOperation, BlendState, ColorTargetState, ColorWrite, CompareFunction,
DepthBiasState, DepthStencilState, PipelineDescriptor, StencilFaceState, StencilState,
},
shader::{Shader, ShaderStage, ShaderStages},
texture::TextureFormat,
};
// pub const PBR_PIPELINE_HANDLE: HandleUntyped =
// HandleUntyped::weak_from_u64(PipelineDescriptor::TYPE_UUID, 13148362314012771389);
pub(crate) fn build_pbr_pipeline(shaders: &mut Assets<Shader>) -> PipelineDescriptor {
PipelineDescriptor {
depth_stencil: Some(DepthStencilState {
format: TextureFormat::Depth32Float,
depth_write_enabled: true,
depth_compare: CompareFunction::Less,
stencil: StencilState {
front: StencilFaceState::IGNORE,
back: StencilFaceState::IGNORE,
read_mask: 0,
write_mask: 0,
},
bias: DepthBiasState {
constant: 0,
slope_scale: 0.0,
clamp: 0.0,
},
clamp_depth: false,
}),
color_target_states: vec![ColorTargetState {
format: TextureFormat::default(),
color_blend: BlendState {
src_factor: BlendFactor::SrcAlpha,
dst_factor: BlendFactor::OneMinusSrcAlpha,
operation: BlendOperation::Add,
},
alpha_blend: BlendState {
src_factor: BlendFactor::One,
dst_factor: BlendFactor::One,
operation: BlendOperation::Add,
},
write_mask: ColorWrite::ALL,
}],
..PipelineDescriptor::new(ShaderStages {
vertex: shaders.add(Shader::from_glsl(
ShaderStage::Vertex,
include_str!("pbr.vert"),
)),
fragment: Some(shaders.add(Shader::from_glsl(
ShaderStage::Fragment,
include_str!("pbr.frag"),
))),
})
}
}