fixed 0.8, added pixel postprocessing shader

main
annieversary 2022-08-12 22:22:37 +01:00
parent b315e589e6
commit b52b1b0d42
15 changed files with 247 additions and 510 deletions

1
.gitignore vendored
View File

@ -1,2 +1,3 @@
/target /target
.DS_Store .DS_Store
/wasm_out/

22
Cargo.lock generated
View File

@ -2998,9 +2998,9 @@ checksum = "9c8d87e72b64a3b4db28d11ce29237c246188f4f51057d65a7eab63b7987e423"
[[package]] [[package]]
name = "wasm-bindgen" name = "wasm-bindgen"
version = "0.2.81" version = "0.2.82"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7c53b543413a17a202f4be280a7e5c62a1c69345f5de525ee64f8cfdbc954994" checksum = "fc7652e3f6c4706c8d9cd54832c4a4ccb9b5336e2c3bd154d5cccfbf1c1f5f7d"
dependencies = [ dependencies = [
"cfg-if 1.0.0", "cfg-if 1.0.0",
"wasm-bindgen-macro", "wasm-bindgen-macro",
@ -3008,13 +3008,13 @@ dependencies = [
[[package]] [[package]]
name = "wasm-bindgen-backend" name = "wasm-bindgen-backend"
version = "0.2.81" version = "0.2.82"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5491a68ab4500fa6b4d726bd67408630c3dbe9c4fe7bda16d5c82a1fd8c7340a" checksum = "662cd44805586bd52971b9586b1df85cdbbd9112e4ef4d8f41559c334dc6ac3f"
dependencies = [ dependencies = [
"bumpalo", "bumpalo",
"lazy_static",
"log", "log",
"once_cell",
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn", "syn",
@ -3035,9 +3035,9 @@ dependencies = [
[[package]] [[package]]
name = "wasm-bindgen-macro" name = "wasm-bindgen-macro"
version = "0.2.81" version = "0.2.82"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c441e177922bc58f1e12c022624b6216378e5febc2f0533e41ba443d505b80aa" checksum = "b260f13d3012071dfb1512849c033b1925038373aea48ced3012c09df952c602"
dependencies = [ dependencies = [
"quote", "quote",
"wasm-bindgen-macro-support", "wasm-bindgen-macro-support",
@ -3045,9 +3045,9 @@ dependencies = [
[[package]] [[package]]
name = "wasm-bindgen-macro-support" name = "wasm-bindgen-macro-support"
version = "0.2.81" version = "0.2.82"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7d94ac45fcf608c1f45ef53e748d35660f168490c10b23704c7779ab8f5c3048" checksum = "5be8e654bdd9b79216c2929ab90721aa82faf65c48cdf08bdc4e7f51357b80da"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
@ -3058,9 +3058,9 @@ dependencies = [
[[package]] [[package]]
name = "wasm-bindgen-shared" name = "wasm-bindgen-shared"
version = "0.2.81" version = "0.2.82"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6a89911bd99e5f3659ec4acf9c4d93b0a90fe4a2a11f15328472058edc5261be" checksum = "6598dd0bd3c7d51095ff6531a5b23e02acdc81804e30d8f07afb77b7215a140a"
[[package]] [[package]]
name = "web-sys" name = "web-sys"

View File

@ -0,0 +1,25 @@
#import bevy_pbr::mesh_view_bindings
@group(1) @binding(0)
var texture: texture_2d<f32>;
@group(1) @binding(1)
var our_sampler: sampler;
@group(1) @binding(2)
var noise: texture_2d<f32>;
@group(1) @binding(3)
var noise_sampler: sampler;
@fragment
fn fragment(
@builtin(position) position: vec4<f32>,
#import bevy_sprite::mesh2d_vertex_output
) -> @location(0) vec4<f32> {
// Get screen position with coordinates from 0 to 1
let uv = position.xy / vec2<f32>(view.width, view.height);
let uv = floor(uv * 400.0) / 400.0;
let col = textureSample(texture, our_sampler, uv);
return round(col * 50.0) / 50.0;
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 KiB

BIN
assets/textures/noise.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 241 B

24
build-wasm.sh Executable file
View File

@ -0,0 +1,24 @@
#!/bin/zsh
set -e
if [ "$1" = "-d" ]; then
echo "debug build"
cargo build --target wasm32-unknown-unknown
wasm-bindgen --out-name moria \
--out-dir wasm_out/ \
--target web \
target/wasm32-unknown-unknown/debug/moria.wasm
else
echo "release build"
cargo build --target wasm32-unknown-unknown --profile wasm-release
wasm-bindgen --out-name moria \
--out-dir wasm_out/ \
--target web \
target/wasm32-unknown-unknown/wasm-release/moria.wasm
fi
cp index.html wasm_out
cp -r assets wasm_out
if [ "$1" = "-d" ]; then
http wasm_out
fi

7
deploy-wasm.sh Executable file
View File

@ -0,0 +1,7 @@
#!/bin/zsh
set -e
./build-wasm.sh
ssh haika "rm -rf /root/web/versary.town/static/moria"
scp -r wasm_out root@haika:~/web/versary.town/static/moria
ssh haika "cd /root/web/versary.town && zola build"

45
index.html Normal file
View File

@ -0,0 +1,45 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>moria</title>
<meta name="description" content="idk, small lil game without many mechanics" />
<style>
body {
background: linear-gradient(135deg,
white 0%,
white 49%,
black 49%,
black 51%,
white 51%,
white 100%);
background-repeat: repeat;
background-size: 20px 20px;
display: flex;
flex-direction: column;
}
h1, p {
margin: 0;
}
canvas, p, h1 {
background-color: white;
}
</style>
</head>
<script type="module">
import init from './moria.js';
init();
</script>
<body>
<h1>moria</h1>
<p>
controls: <strong>WASD</strong> - movement, <strong>Mouse click</strong> - move lights
</p>
</body>
</html>

View File

@ -1,4 +1,17 @@
use bevy::prelude::*; use bevy::{
prelude::*,
reflect::TypeUuid,
render::{
camera::{Camera as BevyCamera, RenderTarget},
render_resource::{
AsBindGroup, Extent3d, ShaderRef, TextureDescriptor, TextureDimension, TextureFormat,
TextureUsages,
},
texture::BevyDefault,
view::RenderLayers,
},
sprite::{Material2d, MaterialMesh2dBundle},
};
use bevy_mod_raycast::{RayCastMethod, RayCastSource}; use bevy_mod_raycast::{RayCastMethod, RayCastSource};
use crate::{pillar::UnlitPillar, player::*}; use crate::{pillar::UnlitPillar, player::*};
@ -7,11 +20,113 @@ pub struct MyRaycastSet;
#[derive(Component)] #[derive(Component)]
pub struct Camera; pub struct Camera;
pub fn spawn_camera(commands: &mut Commands) {
pub fn spawn_camera(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut windows: ResMut<Windows>,
mut meshes: ResMut<Assets<Mesh>>,
mut post_processing_materials: ResMut<Assets<PostProcessingMaterial>>,
mut images: ResMut<Assets<Image>>,
) {
let window = windows.get_primary_mut().unwrap();
let size = Extent3d {
width: window.physical_width(),
height: window.physical_height(),
..default()
};
// This is the texture that will be rendered to.
let mut image = Image {
texture_descriptor: TextureDescriptor {
label: None,
size,
dimension: TextureDimension::D2,
format: TextureFormat::bevy_default(),
mip_level_count: 1,
sample_count: 1,
usage: TextureUsages::TEXTURE_BINDING
| TextureUsages::COPY_DST
| TextureUsages::RENDER_ATTACHMENT,
},
..default()
};
// fill image.data with zeroes
image.resize(size);
let image_handle = images.add(image);
// Main camera, first to render
commands commands
.spawn_bundle(Camera3dBundle::default()) .spawn_bundle(Camera3dBundle {
camera: BevyCamera {
target: RenderTarget::Image(image_handle.clone()),
..default()
},
..default()
})
.insert(Camera) .insert(Camera)
.insert(RayCastSource::<MyRaycastSet>::new()); .insert(RayCastSource::<MyRaycastSet>::new());
// This specifies the layer used for the post processing camera, which will be attached to the post processing camera and 2d quad.
let post_processing_pass_layer = RenderLayers::layer((RenderLayers::TOTAL_LAYERS - 1) as u8);
let quad_handle = meshes.add(Mesh::from(shape::Quad::new(Vec2::new(
size.width as f32,
size.height as f32,
))));
let noise = asset_server.load("textures/noise.png");
// This material has the texture that has been rendered.
let material_handle = post_processing_materials.add(PostProcessingMaterial {
source_image: image_handle,
noise,
});
// Post processing 2d quad, with material using the render texture done by the main camera, with a custom shader.
commands
.spawn_bundle(MaterialMesh2dBundle {
mesh: quad_handle.into(),
material: material_handle,
transform: Transform {
translation: Vec3::new(0.0, 0.0, 1.5),
..default()
},
..default()
})
.insert(post_processing_pass_layer);
// The post-processing pass camera.
commands
.spawn_bundle(Camera2dBundle {
camera: BevyCamera {
// renders after the first main camera which has default value: 0.
priority: 1,
..default()
},
..Camera2dBundle::default()
})
.insert(post_processing_pass_layer);
}
#[derive(AsBindGroup, TypeUuid, Clone)]
#[uuid = "bc2f08eb-a0fb-43f1-a908-54871ea597d5"]
pub struct PostProcessingMaterial {
/// In this example, this image will be the result of the main camera.
#[texture(0)]
#[sampler(1)]
source_image: Handle<Image>,
#[texture(2)]
#[sampler(3)]
noise: Handle<Image>,
}
impl Material2d for PostProcessingMaterial {
fn fragment_shader() -> ShaderRef {
"shaders/post-processing.wgsl".into()
}
} }
pub fn camera_follow_player( pub fn camera_follow_player(
@ -38,7 +153,8 @@ pub fn update_raycast_with_cursor(
for mut pick_source in query.iter_mut() { for mut pick_source in query.iter_mut() {
// Grab the most recent cursor event if it exists: // Grab the most recent cursor event if it exists:
if let Some(cursor_latest) = cursor.iter().last() { if let Some(cursor_latest) = cursor.iter().last() {
pick_source.cast_method = RayCastMethod::Screenspace(cursor_latest.position); // the 2.0 is bc of post-processing, which messes up the coordinates
pick_source.cast_method = RayCastMethod::Screenspace(cursor_latest.position * 2.0);
} }
} }
} }

View File

@ -6,6 +6,7 @@ const RANGE: f32 = 25.0;
#[derive(Component)] #[derive(Component)]
pub struct LightBall; pub struct LightBall;
pub fn light_up_ball_when_close_to_player( pub fn light_up_ball_when_close_to_player(
mut commands: Commands, mut commands: Commands,
player: Query<(&Transform, &Player), Without<LightBall>>, player: Query<(&Transform, &Player), Without<LightBall>>,

View File

@ -1,4 +1,4 @@
use bevy::{pbr::AmbientLight, prelude::*, window::close_on_esc}; use bevy::{pbr::AmbientLight, prelude::*, sprite::Material2dPlugin, window::close_on_esc};
use bevy_mod_raycast::{DefaultRaycastingPlugin, RayCastMesh, RaycastSystem}; use bevy_mod_raycast::{DefaultRaycastingPlugin, RayCastMesh, RaycastSystem};
// use bevy_prototype_debug_lines::*; // use bevy_prototype_debug_lines::*;
@ -25,10 +25,11 @@ pub enum AppState {
fn main() { fn main() {
App::new() App::new()
.insert_resource(Msaa { samples: 4 }) .insert_resource(Msaa { samples: 1 })
.insert_resource(ClearColor(Color::rgb(0.0, 0.0, 0.0))) .insert_resource(ClearColor(Color::rgb(0.0, 0.0, 0.0)))
.add_plugins(DefaultPlugins) .add_plugins(DefaultPlugins)
// .add_plugin(DebugLinesPlugin::with_depth_test(true)) // .add_plugin(DebugLinesPlugin::with_depth_test(true))
.add_plugin(Material2dPlugin::<PostProcessingMaterial>::default())
.init_resource::<Debug>() .init_resource::<Debug>()
.init_resource::<LightBallMaterials>() .init_resource::<LightBallMaterials>()
.init_resource::<PillarMaterials>() .init_resource::<PillarMaterials>()
@ -47,7 +48,11 @@ fn main() {
// loading // loading
.add_system_set(SystemSet::on_update(AppState::Loading).with_system(loading::loading)) .add_system_set(SystemSet::on_update(AppState::Loading).with_system(loading::loading))
// game // game
.add_system_set(SystemSet::on_enter(AppState::Game).with_system(setup)) .add_system_set(
SystemSet::on_enter(AppState::Game)
.with_system(setup)
.with_system(spawn_camera),
)
.add_system_set( .add_system_set(
SystemSet::on_update(AppState::Game) SystemSet::on_update(AppState::Game)
.with_system(update_raw_mouse_coords) .with_system(update_raw_mouse_coords)
@ -71,6 +76,7 @@ fn main() {
.run(); .run();
} }
#[allow(clippy::too_many_arguments)]
fn setup( fn setup(
mut commands: Commands, mut commands: Commands,
assets: Res<loading::LoadedAssets>, assets: Res<loading::LoadedAssets>,
@ -79,7 +85,10 @@ fn setup(
mut ambient: ResMut<AmbientLight>, mut ambient: ResMut<AmbientLight>,
light_ball_materials: Res<LightBallMaterials>, light_ball_materials: Res<LightBallMaterials>,
pillar_materials: Res<PillarMaterials>, pillar_materials: Res<PillarMaterials>,
asset_server: Res<AssetServer>,
) { ) {
asset_server.watch_for_changes().unwrap();
// set ambient light to very low // set ambient light to very low
ambient.color = Color::rgb(0.3, 0.3, 0.3); ambient.color = Color::rgb(0.3, 0.3, 0.3);
ambient.brightness = 0.01; ambient.brightness = 0.01;
@ -144,7 +153,4 @@ fn setup(
Vec3::new(i as f32 * 30.0, 2.0, -10.0), Vec3::new(i as f32 * 30.0, 2.0, -10.0),
); );
} }
// camera
spawn_camera(&mut commands);
} }

View File

@ -28,10 +28,8 @@ pub fn spawn_player(
// light // light
commands commands
.spawn() .spawn_bundle(SpatialBundle::default())
.insert(LightFriends) .insert(LightFriends)
.insert(Transform::default())
.insert(GlobalTransform::default())
.with_children(|children| { .with_children(|children| {
let count = 6; let count = 6;
for i in 0..count { for i in 0..count {

View File

@ -1,392 +0,0 @@
// From the Filament design doc
// https://google.github.io/filament/Filament.html#table_symbols
// Symbol Definition
// v View unit vector
// l Incident light unit vector
// n Surface normal unit vector
// h Half unit vector between l and v
// f BRDF
// f_d Diffuse component of a BRDF
// f_r Specular component of a BRDF
// α Roughness, remapped from using input perceptualRoughness
// σ Diffuse reflectance
// Ω Spherical domain
// f0 Reflectance at normal incidence
// f90 Reflectance at grazing angle
// χ+(a) Heaviside function (1 if a>0 and 0 otherwise)
// nior Index of refraction (IOR) of an interface
// ⟨n⋅l⟩ Dot product clamped to [0..1]
// ⟨a⟩ Saturated value (clamped to [0..1])
// The Bidirectional Reflectance Distribution Function (BRDF) describes the surface response of a standard material
// and consists of two components, the diffuse component (f_d) and the specular component (f_r):
// f(v,l) = f_d(v,l) + f_r(v,l)
//
// The form of the microfacet model is the same for diffuse and specular
// f_r(v,l) = f_d(v,l) = 1 / { |n⋅v||n⋅l| } ∫_Ω D(m,α) G(v,l,m) f_m(v,l,m) (v⋅m) (l⋅m) dm
//
// In which:
// D, also called the Normal Distribution Function (NDF) models the distribution of the microfacets
// G models the visibility (or occlusion or shadow-masking) of the microfacets
// f_m is the microfacet BRDF and differs between specular and diffuse components
//
// The above integration needs to be approximated.
#version 450
const int MAX_LIGHTS = 30;
struct Light {
mat4 proj;
vec4 pos;
vec4 color;
};
layout(location = 0) in vec3 v_WorldPosition;
layout(location = 1) in vec3 v_WorldNormal;
layout(location = 2) in vec2 v_Uv;
#ifdef STANDARDMATERIAL_NORMAL_MAP
layout(location = 3) in vec4 v_WorldTangent;
#endif
layout(location = 0) out vec4 o_Target;
layout(set = 0, binding = 0) uniform CameraViewProj {
mat4 ViewProj;
};
layout(std140, set = 0, binding = 1) uniform CameraPosition {
vec4 CameraPos;
};
layout(std140, set = 1, binding = 0) uniform Lights {
vec4 AmbientColor;
uvec4 NumLights;
Light SceneLights[MAX_LIGHTS];
};
layout(set = 3, binding = 0) uniform StandardMaterial_base_color {
vec4 base_color;
};
#ifdef STANDARDMATERIAL_BASE_COLOR_TEXTURE
layout(set = 3, binding = 1) uniform texture2D StandardMaterial_base_color_texture;
layout(set = 3,
binding = 2) uniform sampler StandardMaterial_base_color_texture_sampler;
#endif
#ifndef STANDARDMATERIAL_UNLIT
layout(set = 3, binding = 3) uniform StandardMaterial_roughness {
float perceptual_roughness;
};
layout(set = 3, binding = 4) uniform StandardMaterial_metallic {
float metallic;
};
# ifdef STANDARDMATERIAL_METALLIC_ROUGHNESS_TEXTURE
layout(set = 3, binding = 5) uniform texture2D StandardMaterial_metallic_roughness_texture;
layout(set = 3,
binding = 6) uniform sampler StandardMaterial_metallic_roughness_texture_sampler;
# endif
layout(set = 3, binding = 7) uniform StandardMaterial_reflectance {
float reflectance;
};
# ifdef STANDARDMATERIAL_NORMAL_MAP
layout(set = 3, binding = 8) uniform texture2D StandardMaterial_normal_map;
layout(set = 3,
binding = 9) uniform sampler StandardMaterial_normal_map_sampler;
# endif
# if defined(STANDARDMATERIAL_OCCLUSION_TEXTURE)
layout(set = 3, binding = 10) uniform texture2D StandardMaterial_occlusion_texture;
layout(set = 3,
binding = 11) uniform sampler StandardMaterial_occlusion_texture_sampler;
# endif
layout(set = 3, binding = 12) uniform StandardMaterial_emissive {
vec4 emissive;
};
# if defined(STANDARDMATERIAL_EMISSIVE_TEXTURE)
layout(set = 3, binding = 13) uniform texture2D StandardMaterial_emissive_texture;
layout(set = 3,
binding = 14) uniform sampler StandardMaterial_emissive_texture_sampler;
# endif
# define saturate(x) clamp(x, 0.0, 1.0)
const float PI = 3.141592653589793;
float pow5(float x) {
float x2 = x * x;
return x2 * x2 * x;
}
// distanceAttenuation is simply the square falloff of light intensity
// combined with a smooth attenuation at the edge of the light radius
//
// light radius is a non-physical construct for efficiency purposes,
// because otherwise every light affects every fragment in the scene
float getDistanceAttenuation(const vec3 posToLight, float inverseRadiusSquared) {
float distanceSquare = dot(posToLight, posToLight);
float factor = distanceSquare * inverseRadiusSquared;
float smoothFactor = saturate(1.0 - factor * factor);
float attenuation = smoothFactor * smoothFactor;
return attenuation * 1.0 / max(distanceSquare, 1e-4);
}
// Normal distribution function (specular D)
// Based on https://google.github.io/filament/Filament.html#citation-walter07
// D_GGX(h,α) = α^2 / { π ((n⋅h)^2 (α21) + 1)^2 }
// Simple implementation, has precision problems when using fp16 instead of fp32
// see https://google.github.io/filament/Filament.html#listing_speculardfp16
float D_GGX(float roughness, float NoH, const vec3 h) {
float oneMinusNoHSquared = 1.0 - NoH * NoH;
float a = NoH * roughness;
float k = roughness / (oneMinusNoHSquared + a * a);
float d = k * k * (1.0 / PI);
return d;
}
// Visibility function (Specular G)
// V(v,l,a) = G(v,l,α) / { 4 (n⋅v) (n⋅l) }
// such that f_r becomes
// f_r(v,l) = D(h,α) V(v,l,α) F(v,h,f0)
// where
// V(v,l,α) = 0.5 / { n⋅l sqrt((n⋅v)^2 (1α2) + α2) + n⋅v sqrt((n⋅l)^2 (1α2) + α2) }
// Note the two sqrt's, that may be slow on mobile, see https://google.github.io/filament/Filament.html#listing_approximatedspecularv
float V_SmithGGXCorrelated(float roughness, float NoV, float NoL) {
float a2 = roughness * roughness;
float lambdaV = NoL * sqrt((NoV - a2 * NoV) * NoV + a2);
float lambdaL = NoV * sqrt((NoL - a2 * NoL) * NoL + a2);
float v = 0.5 / (lambdaV + lambdaL);
return v;
}
// Fresnel function
// see https://google.github.io/filament/Filament.html#citation-schlick94
// F_Schlick(v,h,f_0,f_90) = f_0 + (f_90 f_0) (1 v⋅h)^5
vec3 F_Schlick(const vec3 f0, float f90, float VoH) {
// not using mix to keep the vec3 and float versions identical
return f0 + (f90 - f0) * pow5(1.0 - VoH);
}
float F_Schlick(float f0, float f90, float VoH) {
// not using mix to keep the vec3 and float versions identical
return f0 + (f90 - f0) * pow5(1.0 - VoH);
}
vec3 fresnel(vec3 f0, float LoH) {
// f_90 suitable for ambient occlusion
// see https://google.github.io/filament/Filament.html#lighting/occlusion
float f90 = saturate(dot(f0, vec3(50.0 * 0.33)));
return F_Schlick(f0, f90, LoH);
}
// Specular BRDF
// https://google.github.io/filament/Filament.html#materialsystem/specularbrdf
// Cook-Torrance approximation of the microfacet model integration using Fresnel law F to model f_m
// f_r(v,l) = { D(h,α) G(v,l,α) F(v,h,f0) } / { 4 (n⋅v) (n⋅l) }
vec3 specular(vec3 f0, float roughness, const vec3 h, float NoV, float NoL,
float NoH, float LoH) {
float D = D_GGX(roughness, NoH, h);
float V = V_SmithGGXCorrelated(roughness, NoV, NoL);
vec3 F = fresnel(f0, LoH);
return (D * V) * F;
}
// Diffuse BRDF
// https://google.github.io/filament/Filament.html#materialsystem/diffusebrdf
// fd(v,l) = σ/π * 1 / { |n⋅v||n⋅l| } ∫Ω D(m,α) G(v,l,m) (v⋅m) (l⋅m) dm
// simplest approximation
// float Fd_Lambert() {
// return 1.0 / PI;
// }
//
// vec3 Fd = diffuseColor * Fd_Lambert();
// Disney approximation
// See https://google.github.io/filament/Filament.html#citation-burley12
// minimal quality difference
float Fd_Burley(float roughness, float NoV, float NoL, float LoH) {
float f90 = 0.5 + 2.0 * roughness * LoH * LoH;
float lightScatter = F_Schlick(1.0, f90, NoL);
float viewScatter = F_Schlick(1.0, f90, NoV);
return lightScatter * viewScatter * (1.0 / PI);
}
// From https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
vec3 EnvBRDFApprox(vec3 f0, float perceptual_roughness, float NoV) {
const vec4 c0 = { -1, -0.0275, -0.572, 0.022 };
const vec4 c1 = { 1, 0.0425, 1.04, -0.04 };
vec4 r = perceptual_roughness * c0 + c1;
float a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;
vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw;
return f0 * AB.x + AB.y;
}
float perceptualRoughnessToRoughness(float perceptualRoughness) {
// clamp perceptual roughness to prevent precision problems
// According to Filament design 0.089 is recommended for mobile
// Filament uses 0.045 for non-mobile
float clampedPerceptualRoughness = clamp(perceptualRoughness, 0.089, 1.0);
return clampedPerceptualRoughness * clampedPerceptualRoughness;
}
// from https://64.github.io/tonemapping/
// reinhard on RGB oversaturates colors
vec3 reinhard(vec3 color) {
return color / (1.0 + color);
}
vec3 reinhard_extended(vec3 color, float max_white) {
vec3 numerator = color * (1.0f + (color / vec3(max_white * max_white)));
return numerator / (1.0 + color);
}
// luminance coefficients from Rec. 709.
// https://en.wikipedia.org/wiki/Rec._709
float luminance(vec3 v) {
return dot(v, vec3(0.2126, 0.7152, 0.0722));
}
vec3 change_luminance(vec3 c_in, float l_out) {
float l_in = luminance(c_in);
return c_in * (l_out / l_in);
}
vec3 reinhard_luminance(vec3 color) {
float l_old = luminance(color);
float l_new = l_old / (1.0f + l_old);
return change_luminance(color, l_new);
}
vec3 reinhard_extended_luminance(vec3 color, float max_white_l) {
float l_old = luminance(color);
float numerator = l_old * (1.0f + (l_old / (max_white_l * max_white_l)));
float l_new = numerator / (1.0f + l_old);
return change_luminance(color, l_new);
}
#endif
void main() {
vec4 output_color = base_color;
#ifdef STANDARDMATERIAL_BASE_COLOR_TEXTURE
output_color *= texture(sampler2D(StandardMaterial_base_color_texture,
StandardMaterial_base_color_texture_sampler),
v_Uv);
#endif
#ifndef STANDARDMATERIAL_UNLIT
// calculate non-linear roughness from linear perceptualRoughness
# ifdef STANDARDMATERIAL_METALLIC_ROUGHNESS_TEXTURE
vec4 metallic_roughness = texture(sampler2D(StandardMaterial_metallic_roughness_texture, StandardMaterial_metallic_roughness_texture_sampler), v_Uv);
// Sampling from GLTF standard channels for now
float metallic = metallic * metallic_roughness.b;
float perceptual_roughness = perceptual_roughness * metallic_roughness.g;
# endif
float roughness = perceptualRoughnessToRoughness(perceptual_roughness);
vec3 N = normalize(v_WorldNormal);
# ifdef STANDARDMATERIAL_NORMAL_MAP
vec3 T = normalize(v_WorldTangent.xyz);
vec3 B = cross(N, T) * v_WorldTangent.w;
# endif
# ifdef STANDARDMATERIAL_DOUBLE_SIDED
N = gl_FrontFacing ? N : -N;
# ifdef STANDARDMATERIAL_NORMAL_MAP
T = gl_FrontFacing ? T : -T;
B = gl_FrontFacing ? B : -B;
# endif
# endif
# ifdef STANDARDMATERIAL_NORMAL_MAP
mat3 TBN = mat3(T, B, N);
N = TBN * normalize(texture(sampler2D(StandardMaterial_normal_map, StandardMaterial_normal_map_sampler), v_Uv).rgb * 2.0 - 1.0);
# endif
# ifdef STANDARDMATERIAL_OCCLUSION_TEXTURE
float occlusion = texture(sampler2D(StandardMaterial_occlusion_texture, StandardMaterial_occlusion_texture_sampler), v_Uv).r;
# else
float occlusion = 1.0;
# endif
# ifdef STANDARDMATERIAL_EMISSIVE_TEXTURE
vec4 emissive = emissive;
// TODO use .a for exposure compensation in HDR
emissive.rgb *= texture(sampler2D(StandardMaterial_emissive_texture, StandardMaterial_emissive_texture_sampler), v_Uv).rgb;
# endif
vec3 V = normalize(CameraPos.xyz - v_WorldPosition.xyz);
// Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886"
float NdotV = max(dot(N, V), 1e-4);
// Remapping [0,1] reflectance to F0
// See https://google.github.io/filament/Filament.html#materialsystem/parameterization/remapping
vec3 F0 = 0.16 * reflectance * reflectance * (1.0 - metallic) + output_color.rgb * metallic;
// Diffuse strength inversely related to metallicity
vec3 diffuseColor = output_color.rgb * (1.0 - metallic);
// accumulate color
vec3 light_accum = vec3(0.0);
for (int i = 0; i < int(NumLights.x) && i < MAX_LIGHTS; ++i) {
Light light = SceneLights[i];
vec3 lightDir = light.pos.xyz - v_WorldPosition.xyz;
vec3 L = normalize(lightDir);
float rangeAttenuation =
getDistanceAttenuation(lightDir, light.pos.w);
vec3 H = normalize(L + V);
float NoL = saturate(dot(N, L));
float NoH = saturate(dot(N, H));
float LoH = saturate(dot(L, H));
vec3 specular = specular(F0, roughness, H, NdotV, NoL, NoH, LoH);
vec3 diffuse = diffuseColor * Fd_Burley(roughness, NdotV, NoL, LoH);
// Lout = f(v,l) Φ / { 4 π d^2 }⟨n⋅l⟩
// where
// f(v,l) = (f_d(v,l) + f_r(v,l)) * light_color
// Φ is light intensity
// our rangeAttentuation = 1 / d^2 multiplied with an attenuation factor for smoothing at the edge of the non-physical maximum light radius
// It's not 100% clear where the 1/4π goes in the derivation, but we follow the filament shader and leave it out
// See https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminanceEquation
// TODO compensate for energy loss https://google.github.io/filament/Filament.html#materialsystem/improvingthebrdfs/energylossinspecularreflectance
// light.color.rgb is premultiplied with light.intensity on the CPU
light_accum +=
((diffuse + specular) * light.color.rgb) * (rangeAttenuation * NoL);
}
vec3 diffuse_ambient = EnvBRDFApprox(diffuseColor, 1.0, NdotV);
vec3 specular_ambient = EnvBRDFApprox(F0, perceptual_roughness, NdotV);
output_color.rgb = light_accum;
output_color.rgb += (diffuse_ambient + specular_ambient) * AmbientColor.xyz * occlusion;
output_color.rgb += emissive.rgb * output_color.a;
// tone_mapping
output_color.rgb = reinhard_luminance(output_color.rgb);
// Gamma correction.
// Not needed with sRGB buffer
// output_color.rgb = pow(output_color.rgb, vec3(1.0 / 2.2));
#endif
o_Target = output_color;
}

View File

@ -1,36 +0,0 @@
#version 450
layout(location = 0) in vec3 Vertex_Position;
layout(location = 1) in vec3 Vertex_Normal;
layout(location = 2) in vec2 Vertex_Uv;
#ifdef STANDARDMATERIAL_NORMAL_MAP
layout(location = 3) in vec4 Vertex_Tangent;
#endif
layout(location = 0) out vec3 v_WorldPosition;
layout(location = 1) out vec3 v_WorldNormal;
layout(location = 2) out vec2 v_Uv;
layout(set = 0, binding = 0) uniform CameraViewProj {
mat4 ViewProj;
};
#ifdef STANDARDMATERIAL_NORMAL_MAP
layout(location = 3) out vec4 v_WorldTangent;
#endif
layout(set = 2, binding = 0) uniform Transform {
mat4 Model;
};
void main() {
vec4 world_position = Model * vec4(Vertex_Position, 1.0);
v_WorldPosition = world_position.xyz;
v_WorldNormal = mat3(Model) * Vertex_Normal;
v_Uv = Vertex_Uv;
#ifdef STANDARDMATERIAL_NORMAL_MAP
v_WorldTangent = vec4(mat3(Model) * Vertex_Tangent.xyz, Vertex_Tangent.w);
#endif
gl_Position = ViewProj * world_position;
}

View File

@ -1,58 +0,0 @@
use bevy::asset::Assets;
use bevy::render::{
pipeline::{
BlendFactor, BlendOperation, BlendState, ColorTargetState, ColorWrite, CompareFunction,
DepthBiasState, DepthStencilState, PipelineDescriptor, StencilFaceState, StencilState,
},
shader::{Shader, ShaderStage, ShaderStages},
texture::TextureFormat,
};
// pub const PBR_PIPELINE_HANDLE: HandleUntyped =
// HandleUntyped::weak_from_u64(PipelineDescriptor::TYPE_UUID, 13148362314012771389);
pub(crate) fn build_pbr_pipeline(shaders: &mut Assets<Shader>) -> PipelineDescriptor {
PipelineDescriptor {
depth_stencil: Some(DepthStencilState {
format: TextureFormat::Depth32Float,
depth_write_enabled: true,
depth_compare: CompareFunction::Less,
stencil: StencilState {
front: StencilFaceState::IGNORE,
back: StencilFaceState::IGNORE,
read_mask: 0,
write_mask: 0,
},
bias: DepthBiasState {
constant: 0,
slope_scale: 0.0,
clamp: 0.0,
},
clamp_depth: false,
}),
color_target_states: vec![ColorTargetState {
format: TextureFormat::default(),
color_blend: BlendState {
src_factor: BlendFactor::SrcAlpha,
dst_factor: BlendFactor::OneMinusSrcAlpha,
operation: BlendOperation::Add,
},
alpha_blend: BlendState {
src_factor: BlendFactor::One,
dst_factor: BlendFactor::One,
operation: BlendOperation::Add,
},
write_mask: ColorWrite::ALL,
}],
..PipelineDescriptor::new(ShaderStages {
vertex: shaders.add(Shader::from_glsl(
ShaderStage::Vertex,
include_str!("pbr.vert"),
)),
fragment: Some(shaders.add(Shader::from_glsl(
ShaderStage::Fragment,
include_str!("pbr.frag"),
))),
})
}
}